Robust Centralized Fusion Steady-State Kalman Filter with Uncertain Parameters and Measurement Noise Variances

2014 ◽  
Vol 701-702 ◽  
pp. 532-537 ◽  
Author(s):  
Xue Mei Wang ◽  
Wen Qiang Liu ◽  
Zi Li Deng

For the linear discrete time multisensor system with uncertain model parameters and measurement noise variances, the centralized fusion robust steady-state Kalman filter is presented by a new approach of compensating the parameter uncertainties by a fictitious noise. Based on the Lyapunov equation, it is proved that for given fictitious noise variance, the variances of the actual filtering errors have a less-conservative upper bound when the uncertainty of parameters is limited in a sufficiently small region which is called as robust region of the parameter uncertainties. Further, a simulation example demonstrates how to search the robust region. It is also proved that the robust accuracy of the centralized fusion robust steady-state Kalman filter is higher than that of each local robust Kalman filter. A simulation example shows its effectiveness.

2014 ◽  
Vol 701-702 ◽  
pp. 624-629
Author(s):  
Wen Qiang Liu ◽  
Xue Mei Wang ◽  
Zi Li Deng

For the linear discrete-time multisensor time-invariant system with uncertain model parameters and measurement noise variances, by introducing fictitious noise to compensate the parameter uncertainties, using the minimax robust estimation principle, based on the worst-case conservative multisensor system with conservative upper bounds of measurement and fictitious noises variances, a robust weighted measurement fusion steady-state Kalman filter is presented. By the Lyapunov equation approach, it is proved that when the region of the parameter uncertainties is sufficient small, the corresponding actual fused filtering error variances are guaranteed to have a less-conservative upper bound. Simulation results show the effectiveness and correctness of the proposed results.


2020 ◽  
Vol 53 (2) ◽  
pp. 368-373
Author(s):  
Guangle Jia ◽  
Yulong Huang ◽  
Mingming B. Bai ◽  
Yonggang zhang

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Wei Zheng ◽  
Yi Yu

The vibration-based structural health monitoring has been traditionally implemented through the deterministic approach that relies on a single model to identify model parameters that represent damages. When such approach is applied for truss bridges, truss joints are usually modeled as either simple hinges or rigid connections. The former could lead to model uncertainties due to the discrepancy between physical configurations and their mathematical models, while the latter could induce model parameter uncertainties due to difficulty in obtaining accurate model parameters of complex joint details. This paper is to present a new perspective for addressing uncertainties associated with truss joint configurations in damage identification based on Bayesian probabilistic model updating and model class selection. A new sampling method of the transitional Markov chain Monte Carlo is incorporated with the structure’s finite element model for implementing the approach to damage identification of truss structures. This method can not only draw samples which approximate the updated probability distributions of uncertain model parameters but also provide model evidence that quantify probabilities of uncertain model classes. The proposed probabilistic framework and its applicability for addressing joint uncertainties are illustrated and examined with an application example. Future research directions in this field are discussed.


Sign in / Sign up

Export Citation Format

Share Document