Coupled Modeling of Electromagnetic Field, Fluid Flow, Heat Transfer and Solidification during Conventional DC Casting and Low Frequency Electromagnetic Casting of 7XXX Aluminum Alloys

2006 ◽  
Vol 15-17 ◽  
pp. 18-23 ◽  
Author(s):  
Hai Tao Zhang ◽  
Hiromi Nagaum ◽  
Yu Bo Zuo ◽  
Jian Zhong Cui

A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for the calculation of the electromagnetic field and the latter for the calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from two 7XXX aluminum alloy billets of 200mm diameter, cast during the conventional DC casting and the LFEC casting processes. In addition, a measurement of the sump shape of the billets were carried out by using addition melting metal of Al-30%Cu alloy into the billets during casting process. There was a good agreement between the calculated results and the measured results. Further, comparison of the calculated results during the LFEC process with that during the conventional DC casting process indicated that velocity patterns, temperature profiles and the sump depth are strongly modified by the application of a low frequency electromagnetic field during the DC casting.


2007 ◽  
Vol 546-549 ◽  
pp. 707-712
Author(s):  
Hai Tao Zhang ◽  
Hiromi Nagaum ◽  
Yu Bo Zuo ◽  
Jian Zhong Cui

Low frequency electromagnetic casting is a new developed technology that appears in the recent years. In this paper, a comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during LFEC (low frequency electromagnetic casting) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for calculation of the electromagnetic field and the latter for calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from one 7XXX aluminum alloy billet of 200mm in diameter, during the LFEC casting processes, respectively. There was a good agreement between the calculated results and the measured results. Further, the effects of electromagnetic frequency on fluid flow, temperature field and solidification during LFEC process have investigated numerically by using the mathematic model. The choosing criterion of the electromagnetic frequency during LFEC process has been used in order to obtain the best structure of the billets by analyzing the effects of fluid flow and temperature field on the solidification process in the presence of electromagnetic field.





Sign in / Sign up

Export Citation Format

Share Document