heat transfer and solidification
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 6)

H-INDEX

18
(FIVE YEARS 1)

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1083
Author(s):  
Wang ◽  
Zhang ◽  
Tie ◽  
Qi ◽  
Lan ◽  
...  

A three-dimensional numerical model combining electromagnetic field, fluid flow, heat transfer, and solidification has been established to study the effect of nozzle injection mode and mold electromagnetic stirring (M-EMS) on the internal quality of a continuously cast bloom. The model is validated by measured data of the magnetic flux density along the stirrer center line. According to the simulation and experimental results, M-EMS can introduce a horizontal swirling flow ahead of the solidification front, promoting the superheat dissipation of molten steel and columnar to equiaxed transition (CET). As the stirring current increases from 0 to 800 A, the superheat at the mold exit in the bloom center decreases by 1.9 K for the single-port nozzle case and 3.8 K for the five-port nozzle case. The resulting increase in the equiaxed crystal ratio is about 5.65% and 4.06%, respectively. In comparison, the injection mode shows a more significant influence on the heat transfer and solidification structure in the bloom under the present casting conditions. The superheat at the mold exit in the bloom center decreases by 5.1‒7.7 K as the injection mode changes from a single-port nozzle to a five-port nozzle, and the increase in the equiaxed crystal ratio ranges between 14.8% and 17%. It is found that the flow velocity of the molten steel in front of the solidification interface for the five-port nozzle is higher than that for the single-port nozzle regardless of the M-EMS power. The washing effect here reinforces both the heat exchange through the solidification interface and the dendrite re-melting or fragmenting, stimulating the formation of an equiaxed crystal at the bloom center. In addition, it is observed that both the central shrinkage and carbon segregation have decreased with the five-port nozzle plus M-EMS. This suggests that the combined application of a five-port nozzle and M-EMS can effectively improve the internal quality of large bloom castings.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 543 ◽  
Author(s):  
Yanshen Han ◽  
Xingyu Wang ◽  
Jiangshan Zhang ◽  
Fanzheng Zeng ◽  
Jun Chen ◽  
...  

Water flux distribution largely influences the heat transfer and solidification of continuously-cast steel billets. In this paper, a secondary cooling strategy of transverse non-uniform water flux (i.e., higher flux density on billet center), was established and compared with the uniform cooling strategy using mathematical modeling. Specifically, a heat transfer model and a cellular automaton finite element coupling model were established to simulate the continuous casting of C80D steel billet. The water flux was measured using different nozzle configurations to assist the modeling. The mathematical results were validated by comparing the surface temperature and the solidification structure. It is shown that the non-uniform cooling strategy enables the increase of corner temperature and reduction in surface temperature difference, while a higher reheating rate is found on the surface center of the billet. Moreover, the non-uniform cooling strategy can enhance the cooling effect and refine the solidification structure. Accordingly, the liquid pool length is shortened, and the equiaxed crystal density is increased along with the decreased equiaxed crystal ratio. The uniform cooling strategy contributes to reducing internal cracks of billet, and the non-uniform one is beneficial for surface quality and central segregation. For C80D steel, the non-uniform cooling strategy outperforms the uniform one.


2018 ◽  
Vol 58 (2) ◽  
pp. 201-210 ◽  
Author(s):  
Pavel Ernesto Ramirez Lopez ◽  
Pooria Nazem Jalali ◽  
Ulf Sjöström ◽  
Pär Goran Jönsson ◽  
Kenneth C. Mills ◽  
...  

2018 ◽  
Author(s):  
Matthew T. Moore ◽  
Bangju Chen ◽  
Ken Morales ◽  
Armin Silaen ◽  
Chenn Q. Zhou

Sign in / Sign up

Export Citation Format

Share Document