Study of Sphere NC Sheet Metal Incremental Forming

2011 ◽  
Vol 239-242 ◽  
pp. 1036-1039
Author(s):  
Liu Ru Zhou

The principle of NC incremental sheet metal forming as well as the process planning, experiment of sphere forming are presented. Because the deformation of sheet metal only occurs around the tool head and the deformed region is subjected to shear deformation and thins, and surface area increases. Sheet metal forming stepwise is to lead to the whole sheet metal deformation. According to sine law, a sphere can’t be formed by NC incremental sheet metal forming process in a single process, rather, it must be formed in multi processes. Thus, the two time path process method is presented to form the sphere, and the experiment is made to verify it. A sphere can be formed from a sheet metal in NC incremental forming process by choosing appropriate tool-path planning. The fracture in the forming component can be avoided by these methods. A sphere of uniform wall-thickness can be formed from the truncated cone by NC incremental forming process.

2011 ◽  
Vol 308-310 ◽  
pp. 1004-1007
Author(s):  
Liu Ru Zhou ◽  
Hai Ming Wan

The principle of NC incremental sheet metal forming as well as the process planning, experiment of the square conical box forming are presented. Because the deformation of sheet metal only occurs around the tool head and the deformed region is subjected to stretch deformation and thins, and surface area increases. Sheet metal forming stepwise is to lead to the whole sheet metal deformation. The sine law indicates that the thickness of the square conical box wall is close to zero when the half-apex angle of the square conical box wall is close to zero. Therefore, we must know the forming limit half-apex angle to ensure that the forming can be carried out successfully, i.e., to ensure that the deformed region with a certain thickness will not fracture. It will succeed in square conical box incremental forming in a single tool-path if the forming is carried out with an angle which is larger than the forming limit half-apex angle. The fracture in the forming component can be avoided by these methods. A square conical box of uniform wall-thickness can be formed by NC incremental forming process. The thickness of deformation area is increased by increasing half-apex angle. The wrinkle in the forming component can be avoided by these methods.


2011 ◽  
Vol 239-242 ◽  
pp. 940-943 ◽  
Author(s):  
Liu Ru Zhou

The principle of NC incremental sheet metal forming process as well as the experiment of cone forming are presented. Because the deformation of sheet metal only occurs around the tool head and the deformed region is subjected to stretch deformation, the deformed region of sheet metal thins, and surface area increases. Sheet metal forming stepwise is to lead to the whole sheet metal deformation. The experiment results show that in the case of the parallel line type tool path, a uniform thickness of the deformed region is maintained and in good accordance with that obtained by the sine law. It is found that success in the forming depends on the forming half-apex angleθof the truncated cone. It can be obtained that NC incremental sheet metal forming process is a plane deform process and conforms to the sine law, i.e.t=t0 sinQ.


2011 ◽  
Vol 308-310 ◽  
pp. 1012-1015
Author(s):  
Liu Ru Zhou

The principle of NC incremental sheet metal forming as well as the process planning, experiment of the square conical box forming are presented. Because the deformation of sheet metal only occurs around the tool head and the deformed region is subjected to stretch deformation and thins, and surface area increases. Sheet metal forming stepwise is to lead to the whole sheet metal deformation. The sine law indicates that the thickness of the square conical box wall is close to zero when the half-apex angle of the square conical box wall is close to zero. Therefore, we must know the forming limit half-apex angle to ensure that the forming can be carried out successfully, i.e., to ensure that the deformed region with a certain thickness will not fracture. It will succeed in square conical box incremental forming in a single tool-path if the forming is carried out with an angle which is larger than the forming limit half-apex angle. The fracture in the forming component can be avoided by these methods. A square conical box of uniform wall-thickness can be formed by NC incremental forming process. The thickness of deformation area is increased by increasing half-apex angle. The wrinkle in the forming component can be avoided by these methods.


Author(s):  
Rakesh Lingam ◽  
Anirban Bhattacharya ◽  
Javed Asghar ◽  
N. Venkata Reddy

Incremental Sheet Metal Forming (ISMF) is a flexible sheet metal forming process that enables forming of complex three dimensional components by successive local deformations without using component specific tooling. ISMF is also regarded as die-less manufacturing process and in the absence of part-specific dies, geometric accuracy of formed components is inferior to that of their conventional counterparts. In Single Point Incremental Forming (SPIF), the simplest variant of ISMF, bending near component opening region is unavoidable due to lack of support. The bending in the component opening region can be reduced to a larger extent by another variant of ISMF namely Double Sided Incremental Forming (DSIF) in which a moving tool is used to support the sheet locally at the deformation zone. However the overall geometry of formed components still has unacceptable deviation from the desired geometry. Experimental observation and literature indicates that the supporting tool loses contact with the sheet after forming certain depth. Present work demonstrates a methodology to enhance geometric accuracy of formed components by compensating for tool and sheet deflection due to forming forces. Forming forces necessary to predict compensations are obtained using force equilibrium method along with thickness calculation methodology developed using overlap that occurs during forming (instead of using sine law). Results indicate that there is significant improvement in accuracy of the components produced using compensated tool paths.


2009 ◽  
Vol 410-411 ◽  
pp. 159-166 ◽  
Author(s):  
Horst Meier ◽  
B. Buff ◽  
V. Smukala

This paper describes new developments in incremental, robot-based sheet metal forming (Roboforming). Roboforming is a dieless sheet metal forming process which ensures cost-effective manufacturing of prototype parts and small batches. An approach for increasing the part accuracy in Roboforming is presented. It is developed in a cooperative project funded by the German Federal Ministry of Education and Research called Roboforming. The project concentrates on the development of an industrial applicable system design. The use of standard components allows a modular and scalable set-up. A servo loop, consisting of sensors and a programming system, represents the basis of this design and shall guarantee higher part accuracies by measuring the deviations between a formed part and its target geometry. The deviations are used to derive corrected tool paths. The correction is performed by an adjustment vector for every point on the tool path. The theory for this strategy and first results are presented in this paper.


2016 ◽  
Vol 17 (4) ◽  
pp. 411 ◽  
Author(s):  
L. Ben Said ◽  
J. Mars ◽  
M. Wali ◽  
F. Dammak

2017 ◽  
Vol 207 ◽  
pp. 836-841 ◽  
Author(s):  
Chenhao Wang ◽  
William J.T. Daniel ◽  
Haibo Lu ◽  
Sheng Liu ◽  
Paul A. Meehan

Sign in / Sign up

Export Citation Format

Share Document