Mechanics & Industry
Latest Publications


TOTAL DOCUMENTS

741
(FIVE YEARS 243)

H-INDEX

16
(FIVE YEARS 4)

Published By Edp Sciences

2257-7750, 2257-7777

2021 ◽  
Vol 22 ◽  
pp. 7
Author(s):  
Kai Lu ◽  
Dewen Liu ◽  
Yan Wu ◽  
Shusen Liu ◽  
Shuzhan Bai

A new mixer for a diesel engine after-treatment system is developed to meet the requirements of China VI emission regulation. As for the structure of the mixer, it is surrounded by spiral blades, and the center is staggered with small blades, which is conducive to the crushing of urea droplets and can make the droplets fully mixed with air, improve the conversion efficiency of nitrogen oxides (NOx) and reduce ammonia leakage. The numerical analysis, engine bench test, and vehicle road test were carried out on the after-treatment system equipped with the new mixer. The numerical calculation results show that the velocity uniformity index of the selective catalytic reduction (SCR) carrier can reach 0.98, as well as the ammonia uniformity can reach 0.95, meanwhile, the low wall film height shows excellent anti-crystallization properties. engine bench test results are consistent with numerical results. The crystallization status of the mixer after the vehicle durability test is acceptable and well performed.


2021 ◽  
Vol 22 ◽  
pp. 35
Author(s):  
Yvon Briend ◽  
Eric Chatelet ◽  
Régis Dufour ◽  
Marie-Ange Andrianoely ◽  
Franck Legrand ◽  
...  

On-board rotating machinery subject to multi-axial excitations is encountered in a wide variety of high-technology applications. Such excitations combined with mass unbalance forces play a considerable role in their integrity because they can cause parametric instability and rotor–stator interactions. Consequently, predicting the rotordynamics of such machines is crucial to avoid triggering undesirable phenomena or at least limiting their impacts. In this context, the present paper proposes an experimental validation of a numerical model of a rotor-shaft-hydrodynamic bearings system mounted on a moving base. The model is based on a finite element approach with Timoshenko beam elements having six degrees of freedom (DOF) per node to account for the bending, torsion and axial motions. Classical 2D rectangular finite elements are also employed to obtain the pressure field acting inside the hydrodynamic bearing. The finite element formulation is based on a variational inequality approach leading to the Reynolds boundary conditions. The experimental validation of the model is carried out with a rotor test rig, designed, built, instrumented and mounted on a 6-DOF hydraulic shaker. The rotor’s dynamic behavior in bending, torsion and axial motions is assessed with base motions consisting of mono- and multi-axial translations and rotations with harmonic, random and chirp sine profiles. The comparison of the predicted and measured results achieved in terms of shaft orbits, full spectrums, transient history responses and power spectral densities is very satisfactory, permitting the experimental validation of the model proposed.


2021 ◽  
Vol 22 ◽  
pp. 16
Author(s):  
Di Kang ◽  
Ze Jun Chen ◽  
You Hua Fan ◽  
Cheng Li ◽  
Chengji Mi ◽  
...  

In order to achieve fully automated picking of camellia fruit and overcome the technical difficulties of current picking machinery such as inefficient service and manual auxiliary picking, a novel multi-links-based picking machine was proposed in this paper. The working principle and process of this device was analyzed. The mechanism kinematics equation was given, and the velocity executive body was obtained, as well as the acceleration. The acceleration at pivotal positions was tested in the camellia fruit forest, and the simulated results agreed well with the experimental ones. Then, the maximum acceleration of executive body and weight was considered as the optimization objective, and the rotating speed of crank, the radius and thickness of crank and the length and radius of link rod were regarded as the design variable. Based on the Kriging surrogate model, the relationship between variables and optimization objectives was built, and their interrelations were analyzed. Finally, the optimal solution was acquired by the non-dominated sorting genetic algorithm II, which resulted in the reduction of the maximum acceleration of executive body by 31.30%, as well as decrease of weight by 27.51%.


2021 ◽  
Vol 22 ◽  
pp. 22
Author(s):  
Jun Li ◽  
Hal Gurgenci ◽  
Jishun Li ◽  
Lun Li ◽  
Zhiqiang Guan ◽  
...  

Supercritical carbon dioxide (SCO2) Brayton cycle microturbine can be used for the next generation of solar power. In order to comprehensively optimize the supporting system and cooling device parameters of Brayton cycle shafting, the concept of chaos interval is introduced by chaotic mapping, and the CIMPSO algorithm is proposed to optimize the multi-objective rotor system model with nonlinear variables.The results show that the resonance amplitude of the optimized model is effectively attenuated, and the critical speed point is far away from the working speed, which shows the robustness of the optimization algorithm. Finally, based on arbitrary several sets of optimization solutions and empirical parameters, the finite element model of shafting is established for simulation, and the results show that the optimized solution has certain guiding significance for the design of the rotor system.The cooling device is designed and simulated by CFD method based on the optimal solution set. Both the inlet boundary conditions of given pressure (1 MPα) and given mass flow rate (0.1 kg/s) numerical calculations were carried out to characterize the cooling performance, for different jet impingement configurations (Hr/din = 0.0125 ∼ 5).Several sets of analyses show the strong effects of the jet-to-target spacing (Hr/din) on the rotor thermal performance at a given diameter (din) of the nozzle. Average temperature (Tc) at the free end of the rotor show that, as jet-to-target distance decreases (0.0125 ≤ Hr/din ≤ 0.33), the heat dissipation efficiency of the cooling device with the given pressure boundary condition tends to decrease, while the conclusion is opposite when the inlet boundary condition is set to the given mass flow rate. And there is an interval for the optimal combination (Hr/din) to promote the cooling efficiency.


2021 ◽  
Vol 22 ◽  
pp. 25
Author(s):  
Václav Uruba ◽  
Pavel Procházka ◽  
Vladislav Skála

Flow in a branched channel is studied experimentally using the PIV technique. The presented study is concentrated on clarifying the dynamical behaviour in individual branches. The 11 branches issuing from the main channel perpendicularly, all channels are of rectangular cross-section. First, the time-mean flow-field is shown, then the flow dynamics is investigated using the OPD method. Flow patterns and frequencies are evaluated in three selected branches. The separated flow in branches exhibits highly dynamical behaviour, which differs substantially in the branches close to the inflow, in the main channel middle and close to its end. The typical topologies and frequencies of the detected quasi-periodical structures in the channel braches are shown in the study. Mostly, the flow-fields are populated by trains of vortices with alternating orientation and saddle-like structures. The flow-field close to the channel walls affects heat transfer process between the wall and fluid.


2021 ◽  
Vol 22 ◽  
pp. 32
Author(s):  
Agathe Reille ◽  
Victor Champaney ◽  
Fatima Daim ◽  
Yves Tourbier ◽  
Nicolas Hascoet ◽  
...  

Solving mechanical problems in large structures with rich localized behaviors remains a challenging issue despite the enormous advances in numerical procedures and computational performance. In particular, these localized behaviors need for extremely fine descriptions, and this has an associated impact in the number of degrees of freedom from one side, and the decrease of the time step employed in usual explicit time integrations, whose stability scales with the size of the smallest element involved in the mesh. In the present work we propose a data-driven technique for learning the rich behavior of a local patch and integrate it into a standard coarser description at the structure level. Thus, localized behaviors impact the global structural response without needing an explicit description of that fine scale behaviors.


2021 ◽  
Vol 22 ◽  
pp. 48
Author(s):  
Yujie Li ◽  
Ming Zhang ◽  
Yu Zhu

This paper proposes a POI displacement estimation method based on the functional optical fiber sensor and the phase modulation principle to improve the POI displacement estimation accuracy. First, the relation between the object deformation and the optic fiber lightwave phase is explained; the measurement principle of functional optical fiber sensor based on the heterodyne interference principle and its layout optimization method is proposed, and a POI displacement estimation model is presented based on the data approach. Secondly, a beam is taken as the simulation object, the optimal position and length of the optical fiber sensor are determined based on its simulation data. Finally, the experimental device is designed to verify the effectiveness of the POI displacement estimation method based on the optic fiber sensors. The frequency-domain plot of the signals shows that the optical fiber sensors can express the flexible deformation of the analyzed object well. The POI displacement estimation model with the fiber optic sensor signals as one of the inputs is constructed. Through estimating the test data, the error using the optical fiber sensor-based POI displacement estimation method proposed in this paper reduces by more than 61% compared to the rigid body-based assumption estimation method.


2021 ◽  
Vol 22 ◽  
pp. 33
Author(s):  
Longlong Geng ◽  
Xiaozhong Deng ◽  
Hua Zhang ◽  
Shaowu Nie ◽  
Chuang Jiang

In this paper, a double-side milling method on spiral bevel gear is proposed. First, according to the tooth taper processed by double-side milling method, the influence of dedendum angle on the tooth taper was researched. Taking cut parameters into comprehensive consideration, the geometric parameters were designed through the inclination of root line and modified mean point in which machine setting parameters calculated was selected. Only the modified mean point met the meshing equation, and the error of pressure angle would increase as far away from the modified mean point in tooth line. The error would lead to bias in contact. A helical correction motion was introduced and the influence of helical motion coefficient on tooth surface topology was studied. Based on the meshing performance, a suitable coefficient was calculated. Finally, an example was illustrated. The experimental results were consistent with the theoretical analysis. The validity of the proposed method is verified.


2021 ◽  
Vol 22 ◽  
pp. 50
Author(s):  
Guillaume Cadet ◽  
Manuel Paredes ◽  
Hervé Orcière

In a context of increased competition, companies are looking to optimize all the components of their systems. They use compression springs with constant pitch for their linear force/length relationship. However, it appears that the classic formula determining the global load-length of the spring is not always accurate enough. It does not consider the effects of the spring's ends, which can induce non-linear behaviour at the beginning of compression and thus propagate an error over the full load-length estimated. The paper investigates the entire behaviour of a cylindrical compression spring, not ground, using analytical, simulation and experimental approaches in order to help engineers design compression springs with greater accuracy. It is built with an analytical finite element method, considering all the geometry and force components of the spring. As a result, the global load-length of compression springs can be calculated with more accuracy. Moreover, it is now possible to determine the effective tri-linear load-length relation of compression springs not ground and thus to enlarge the operating range commonly defined by standards. This study is the first that enables the behaviour to be calculated quickly, by saving time on dimensioning optimisation and on the manufacturing process of compression springs not ground.


2021 ◽  
Vol 22 ◽  
pp. 2
Author(s):  
Qin He ◽  
Peng Zhang ◽  
Shunxin Cao ◽  
Ruijun Zhang ◽  
Qing Zhang

Aiming at the inconsistency between the vibration of the car and the car frame in the actual operation of a high-speed elevator and the horizontal vibration caused by the roughness excitation of the guide rail, this study designs a gas–liquid active guide shoe and establishes a horizontal vibration model of the 8-DOF high-speed elevator car system separated from the car and the car frame. Then, the correctness of the model is verified by experiments. Based on this, a fuzzy neural network intelligent vibration reduction controller based on the Mamdani model is designed and simulated by MATLAB. The results show that the root mean square value, mean value, and maximum value of vibration acceleration are reduced by more than 55% after using the fuzzy neural network control method, and the suppression effect is better than that of BP neural network control. Therefore, the intelligent vibration absorption controller designed by this research institute can effectively suppress the horizontal vibration of high-speed elevators.


Sign in / Sign up

Export Citation Format

Share Document