Study on Heat Transfer Model of 2024 Aluminum Alloy under Static Magnetic Field

2011 ◽  
Vol 366 ◽  
pp. 229-233
Author(s):  
Chang Gui Cheng ◽  
Le Yu ◽  
Wen Cheng Wan ◽  
Zhong Tian Liu

The paper has established a two-dimensional non-steady-state heat transfer model for 2024 aluminum alloy solidification process under the static magnetic field. According to the measured temperature and the inverse heat transfer problem, the boundary conditions of model have been determined, the results show that the solidification rate and heat flux acting on the ingot surface increase with increasing of the static magnetic filed strength; when the static magnetic filed strength become stronger, the isotherm location will move towards the liquid pool center, and the temperature gradient in the liquid metal pool will increase.

2011 ◽  
Vol 225-226 ◽  
pp. 701-705
Author(s):  
Chang Gui Cheng ◽  
Le Yu ◽  
Wen Cheng Wan ◽  
Zhong Tian Liu ◽  
Yan Jin

With the methods of macrostructure observation and temperature measurement, the paper has studied the influence rules of static magnetic field on 2024 aluminum alloy solidification structure and solidification rate. The conclusions can be concluded as follows: the static magnetic field can inhibit the growth of columnar crystals and promote the growth of equiaxed crystals; when the magnetic flux density is increased, the grain refining effect is better, the solidification rate of 2024 aluminum alloy increases remarkably, and the full solidification time is shorter; the reasons of grain refinement may be that the thermo-electromagnetic convection effect related to Peltier effect is stronger than electromagnetic braking effect, which can enhance the heat transfer and fluid flow in the solidification front, and that undercooling temperature is enlarged.


2015 ◽  
Author(s):  
Elisan dos Santos Magalhães ◽  
Edmilson Otoni Correa ◽  
Ana Lúcia Fernandes de Lima E Silva ◽  
Sandro Metrevelle Marcondes Lima E Silva

2004 ◽  
Vol 127 (3) ◽  
pp. 555-563 ◽  
Author(s):  
Jie Luo ◽  
Albert J. Shih

The explicit finite difference formulation of an inverse heat transfer model to calculate the heat flux generated by induction is developed. The experimentally measured temperature data are used as the input for the inverse heat transfer model. This model is particularly suitable for a workpiece with low cross section Biot number. Induction heating experiments are carried out using a carbon steel rod. The finite difference method and thermocouple temperature measurements are applied to estimate the induction heat flux and workpiece temperature. Compared to measured temperatures, the accuracy and limitation of proposed method is demonstrated. The effect of nonuniform temperature distribution, particularly in the heating region during the induction heating, is studied. Analysis results validate the assumption to use the uniform temperature in a cross section for the inverse heat transfer solution of induction heat flux. Sensitivity to the grid spacing, thermocouple location, and thermophysical properties are also studied.


2018 ◽  
Vol 1 (1) ◽  
pp. 142-150
Author(s):  
Murat Tunc ◽  
Ayse Nur Esen ◽  
Doruk Sen ◽  
Ahmet Karakas

A theoretical post-dryout heat transfer model is developed for two-phase dispersed flow, one-dimensional vertical pipe in a post-CHF regime. Because of the presence of average droplet diameter lower bound in a two-phase sparse flow. Droplet diameter is also calculated. Obtained results are compared with experimental values. Experimental data is used two-phase flow steam-water in VVER-1200, reactor coolant system, reactor operating pressure is 16.2 MPa. On heater rod surface, dryout was detected as a result of jumping increase of the heater rod surface temperature. Results obtained display lower droplet dimensions than the experimentally obtained values.


2006 ◽  
Author(s):  
Filip Kitanoski ◽  
Wolfgang Puntigam ◽  
Martin Kozek ◽  
Josef Hager

2021 ◽  
Vol 71 ◽  
pp. 104456
Author(s):  
Zhuoran Zhang ◽  
Pratik Krishnan ◽  
Zeren Jiao ◽  
M. Sam Mannan ◽  
Qingsheng Wang

Sign in / Sign up

Export Citation Format

Share Document