solidification rate
Recently Published Documents


TOTAL DOCUMENTS

359
(FIVE YEARS 71)

H-INDEX

19
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Joonghyeon Shin ◽  
Minjung Kang

Abstract Battery cells are connected via bus-bars to meet performance requirements, such as power and capacity, and multiple layers of dissimilar materials functioning as anodes, cathodes, or bus-bars are overlapped and welded together. In laser welding, the formation of brittle intermetallic phases in the weld joint is inevitable and, in turn, deteriorates the mechanical properties. To obtain the desirable joint performance, appropriate welding parameters to avoid intermetallic phase formations and joint designs to release stress concentrations must be obtained. This study investigates the effects of lap configurations and process parameters on the tensile-shear load, T-peel load, and composition distribution when multi-layered joints of dissimilar materials are produced by laser welding. Two layers of 0.4 mm Al sheets were welded with a single 0.2 mm Cu sheet, which was emulated using electric vehicle battery interconnects. The results show that the penetration depth varied in accordance with the lap configuration even under the same heat input condition. The lap configuration and welding parameters influenced the composition distribution of the welds, as they altered the solidification rate, number of Cu/Al contact interfaces, and location of the high-density material. The failure load of the T-peel specimens was always lower than that of the tensile-shear specimens except for the Cu−Al−Al lap configuration. The T-peel load of the Cu−Al−Al lap configuration was similar to that of the tensile-shear load. When the stress-concentrated joint was homogeneous, it was more robust.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Jian Chen ◽  
Hailang Liu ◽  
Zhiguo Peng ◽  
Jie Tang

To better control the Inconel617 electron beam cladding solidification process, a three-dimensional temperature field model was built to simulate the temperature gradient, cooling rate, and solidification rate in the solidification process and take a deep dive into the solidification behavior, as well as the calculation of the solidification characteristic parameters at the edge of the molten pool and then predict the solidification tissue structure. The study shows that the largest temperature gradient occurred in the material thickness direction. The self-cooling effect of the material dominated the solidification of the alloy layer; the cooling rate depended on the high-temperature thermal conductivity of the material and the self-cooling effect of the matrix, and the maximum cooling rate in the bonding zone was 1380 °C/s. The steady-state solidification rate was equal to the moving speed of the heat source; the solidification characteristics of the solidification process at the edge of the molten pool increased with the distance from the surface: the cooling rate decreased from 1421.61 to 623 °C/s, the temperature gradient increased from 0.0723 × 106 to 0.417 × 106, and the solidification rate decreased from 0.01 to 0 m/s. The prediction was made that the small and thin equiaxed crystals are on the top, a thin and short dendritic transition structure in the middle, and relatively coarse dendrites at the bottom. Experiments confirmed that the solidification tissue structure is basically consistent with the simulation law.


Author(s):  
Sudipta Biswas ◽  
Dehao Liu ◽  
Aagesen Larry K ◽  
Wen Jiang

Abstract Solidification is a significant step in the forming of crystalline structures during various manufacturing and material processing techniques. Solidification characteristics and the microstructures formed during the process dictate the properties and performance of the materials. Hence, understanding how the process conditions relate to various microstructure formations is paramount. In this work, a grand-potential-based multi-phase, multi-component, multi-order-parameter phase-field model is used to demonstrate the solidification of alloys in 2D. This model has several key advantages over other multi-phase models such as it decouples the bulk energy from the interfacial energy, removes the constraints for the phase concentration variable, and prevents spurious 3rd-phase formation at the two phase interfaces. Here, the model is implemented in a finite-element-based phase-field modeling code. The role of various modeling parameters in governing the solidification rate and the shape of the solidified structure is evaluated. It is demonstrated that the process conditions such as temperature gradient, thermal diffusion, cooling rate, etc., influence the solidification characteristics by altering the level of undercooling. Furthermore, the capability of the model to capture directional solidification and polycrystalline structure formation exhibiting various grain shapes is illustrated. In both these cases, the process conditions have been related to the growth rate and associated shape of the dendritic structure. This work serves as a stepping stone towards resolving the larger problem of understanding the process-structure-property-performance correlation in solidified materials.


Author(s):  
E. I. Marukovich ◽  
V. Yu. Stetsenko ◽  
A. V. Stetsenko

Method of calculation and calculated values of parameters of elementary nanocrystals of liquid metals at melting temperature are given. It has been shown that radii of elementary nanocrystals are from 2 nm to 12 nm, and the number of atoms in each elementary nanocrystal varies from 2000 to 100000. This provides liquid metals with a high solidification rate and explains the abnormally high diffusion coefficient in liquid metals compared to solid metals.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2056
Author(s):  
Evgenii Aryshenskii ◽  
Maksim Lapshov ◽  
Sergey Konovalov ◽  
Jurgen Hirsch ◽  
Vladimir Aryshenskii ◽  
...  

The study investigates the effect of casting speed on the solidification microstructure of the aluminum alloy Al0.3Mg1Si with and without the additions of zirconium and scandium. Casting was carried out in steel, copper, and water-cooled chill molds with a crystallization rate of 20 °C/s, 10 °C/s, and 30 °C/s, respectively. For each casting mode, the grain structure was investigated by optical microscopy and the intermetallic particles were investigated by scanning and transmission microscopy; in addition, measurements of the microhardness and the electrical conductivity were carried out. An increase in the solidification rate promotes grain refinement in both alloys. At the same time, the ingot cooling rate differently affects the number of intermetallic particles. In an alloy without scandium–zirconium additives, an increase in the ingot cooling rate leads to a decrease in the number of dispersoids due to an increase in the solubility of the alloying elements in a supersaturated solid solution. With the addition of scandium and zirconium, the amount of dispersoids increases slightly. This is because increasing the solubility of the alloying elements in a supersaturated solid solution is leveled by a growth of the number of grain boundaries, promoting the formation of particles of the (AlSi)3ScZr type, including those of the L12 type. In addition, the increase in the crystallization rate increases the number of primary nonequilibrium intermetallic particles which have a eutectic nature.


2021 ◽  
Author(s):  
Wenhui Yang ◽  
Yanhai Cheng ◽  
Yipeng Zhang ◽  
Jinyong Yang ◽  
Xiubing Liang

Abstract Laser cladding as an emerging surface modification technology can be widely adopted for surface modification. In this study, 27SiMn was selected as the substrate, the powder was a self-made iron-based alloy, and the thermophysical properties of the material were predicted by the CALPHAD algorithm. The numerical model of the laser cladding process is established by setting reasonable hypothetical condition, initial condition, boundary condition, and solver parameters. In order to verify the accuracy of the numerical model, 10 sets of experiments have been carried out, and the agreement between the model calculation results and the experimental results reached 92%. Through the study of energy distribution in the laser cladding process, it is found that about 10% of the laser energy is used to heat the substrate to form a melt-pool, and at least 53% of the energy is radiated into the environment. Finally, the effects of temperature gradient and solidification rate on the microstructure of the cladding layer were explored.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7285
Author(s):  
Yuelin Qin ◽  
Ke Zhang ◽  
Xinlong Wu ◽  
Qingfeng Ling ◽  
Jinglan Hu ◽  
...  

Blast furnace slag, which is the main by-product of the ironmaking process discharged at 1450 °C, contains high-quality sensible heat, while oily sludge is the main solid waste produced in the process of gas exploration, storage, and transportation. The energy and resource utilization of blast furnace slag is complementary to the environmentally friendly treatment of oily sludge, which has provided a new idea for the multi-factor synergistic cycle and energy transformation of the two wastes. The pyrolysis of the oily sludge with the molten blast furnace slag was conducted in the current paper. Results showed that the oily sludge was rapidly pyrolyzed, and the heavy metal elements in the oily sludge were solidified. The solidification rate of the heavy metals exceeds 90%, except for vanadium. The reconstituted water-quenched blast furnace slag still has good activity, and it will not affect the further use of the slag after pyrolysis (BFS-P).


Author(s):  
Xing Mu ◽  
Yan Qi ◽  
Shaowen Yan ◽  
Yongqing Liu ◽  
Chao Cheng ◽  
...  

Magnetostrictive property shows anisotropic characteristics, which are related to phase structure and crystal orientation. In this paper, phase structures and magnetostrictive properties of Fe[Formula: see text]Ga[Formula: see text] at different solidification rates during zone-melting directional solidification were studied. Results show that when the solidification rate exceeds 72 mm/h, the sample has a single A2 structure. A multiphase structure of D03 and A2 is formed when the solidification rate is 36 mm/h. The multiphase structure of L12 and A2 emerges in the sample prepared with a solidification rate of 18 mm/h. The samples with L12 and A2 multiphase structure have excellent low-field magnetostrictive properties, reaching 68 × 10[Formula: see text] under a magnetic field of 20 kA/m.


Sign in / Sign up

Export Citation Format

Share Document