coolant system
Recently Published Documents


TOTAL DOCUMENTS

307
(FIVE YEARS 52)

H-INDEX

13
(FIVE YEARS 1)

Kerntechnik ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Alexandre de Souza Soares ◽  
Antonio C. M. Alvim

Abstract The integrity of the reactor coolant system is severely challenged as a result of an Emergency Power Mode – ATWS event. The purpose of this paper is to simulate the Anticipated Transient without Scram (ATWS) using the full scope simulator of Angra 2 Nuclear Power Plant with the Emergency Power Case as a precursor event. The results are discussed and will be used to examine the integrity of the reactor coolant system. In addition, the results were compared with the data presented in Final Safety Analysis Report (FSAR – Angra 2) in order to guarantee the validation of the methodology and from there analyze other precursor events of ATWS which presented only plausibility studies in FSAR – Angra 2. In this way, the aim is to provide and develop the knowledge and skill necessaries for control room operating personnel to ensure safe and reliable plant operation and stimulate information in the nuclear area through the academic training of new engineers. In the presented paper the most severe scenario is analyzed in which the Reactor Coolant System reaches its highest level of coolant pressure. This scenario is initiated by the turbine trip jointly with the loss of electric power systems (Emergency Power Mode). In addition, the failure of the reactor shutdown system occurs, i.e., control rods fail to drop into the reactor core. The reactor power is safely reduced through the inherent reactivity feedback of the moderator and fuel, together with an automatic boron injection. Several operational variables were analyzed and their profiles over time are shown in order to provide data and benchmarking references. At the end of the event, it was noted that Reactor shutdown is assured, as is the maintenance of subcriticality. Residual heat removal is ensured.


2021 ◽  
Vol 1 (2) ◽  
pp. 11-19
Author(s):  
Catur Febriyanto Sutopo ◽  
◽  
Arifin M. Susanto

IN 2021, BAPETEN, AS THE REGULATORY BODY, IS ESTABLISHING A BAPETEN REGULATION REGARDING THE REACTOR COOLANT SYSTEM AND RELATED SYSTEMS, WHICH CURRENTLY ARE NOT YET AVAILABLE. Therefore, it is crucial to establish the BAPETEN Regulation. Based on the reasons, before setting the BAPETEN Regulation, it is necessary to conduct a study that is expected to provide a more comprehensive description and provide recommendations on what things need to be regulated in the BAPETEN Regulation, especially for gas-cooled reactors. The method used in this study is a literature study from various relevant references. The result of this study is that it is essential to require a capacity of the ultimate heat sink, including the spent nuclear fuel storage pool and a minimum period of the ability of the top heat sink in the accident analysis if the decay heat in the storage pool and the residual heat in the reactor core fail simultaneously. On the other hand, it is also necessary to require a margin of uncertainty to evaluate a situation and take corrective action. Likewise, independent and redundant access to the ultimate heat sink is needed to increase reliability. As for gas-cooled reactors, it is required to adapt the terms used. In addition, it is necessary to determine the appropriate definition because some of the terms used in water-cooled reactors have the same terms as gas-cooled reactors but have different functions. Keywords: Regulatory assessment, coolant system, related systems, gas-cooled reactors


Author(s):  
Yue Zou ◽  
Brian Derreberry

Abstract Thermal cycling induced fatigue is widely recognized as one of the major contributors to the damage of nuclear plant piping systems, especially at locations where turbulent mixing of flows with different temperature occurs. Thermal fatigue caused by swirl penetration interaction with normally stagnant water layers has been identified as a mechanism that can lead to cracking in dead-ended branch lines attached to pressurized water reactor (PWR) primary coolant system. EPRI has developed screening methods, derived from extensive testing and analysis, to determine which lines are potentially affected as well as evaluation methods to perform evaluations of this thermal fatigue mechanism for the U.S. PWR plants. However, recent industry operating experience (OE) indicate that the model used to predict thermal fatigue due to swirl penetration is not fully understood. In addition, cumulative effects from other thermal transients, such as outflow activities, may also contribute to the failure of the RCS branch lines. In this paper, we report direct OE from one of our PWR units where thermal fatigue cracking is observed at the RCS loop drain line close to the welded region of the elbow. A conservative analytical approach that takes into account the influence of thermal stratification, in accordance with ASME Class 1 piping stress method, is also proposed to evaluate the severity of fatigue damage to the RCS drain line, as a result of transients from outflow activities. Finally, recommendations are made for future operation and inspection based on results of the evaluation.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1725
Author(s):  
Hee-Chul Eun ◽  
Na-On Chang ◽  
Wang-Kyu Choi ◽  
Sang-Yoon Park ◽  
Seon-Byeong Kim ◽  
...  

It is very important to minimize the waste generation for decontamination of the reactor coolant system in a nuclear facility. As an alternative to commercial decontamination technologies, an inorganic acid chemical decontamination (SP-HyBRID) process can be effectively applied to the decontamination because it can significantly reduce the waste generation. In this study, the decontamination of a contaminated reactor coolant pump shaft from a nuclear facility was conducted using the SP-HyBRID process. First, equipment for a mock-up test of the decontamination was prepared. Detailed experimental conditions for the decontamination were determined through the mock-up test. Under the detailed conditions, the contaminated shaft was successfully decontaminated. The dose rate on the shaft surface was greatly reduced from 1400 to 0.9 μSv/h, and the decontamination factor showed a very high value (>1500).


2021 ◽  
Author(s):  
Mehul Varshney ◽  
Abhishek Ballani ◽  
Shyam Sundar Pasunurthi ◽  
Dipak Maiti ◽  
Chiranth Srinivasan

2021 ◽  
Vol 9 (4) ◽  
pp. 9-15
Author(s):  
Van Thai Nguyen ◽  
Manh Long Doan ◽  
Chi Thanh Tran

A severe accident-induced of a Steam Generator (SG) tube releases radioactivity from the Reactor Coolant System (RCS) into the SG secondary coolant system from where it may escape to the environment through the pressure relief valves and an environmental release in this manner is called “Containment Bypass”. This study aims to evaluate the potential for “Containment Bypass” in VVER/V320 reactor during extended Station Blackout (SBO) scenarios that challenge the tubes by primarily involving a natural circulation of superheated steam inside the piping loop and then induce creep rupture tube failure. Assessments are made of SCDAP/RELAP5 code capabilities for predicting the plant behavior during an SBO event and estimates are made of the uncertainties associated with the SCDAP/RELAP5 predictions for key fluid and components condition and for the SG tube failure margins. 


2021 ◽  
Author(s):  
Yubin Zhang

Abstract The design transients (DTS) are intended to be used to evaluate component stress analysis, which bound the plant operation over the design plant life, and will be as a reference document regarding plant usage factor surveillance. The conditions of DTS represent bounding cases for plant events that are expected to occur, or that may occur, during the plant lifetime. For different operating conditions, DTS analysis methods would be different. This report describes the DTS analysis method to be used when designing the major reactor coolant system components of the 1000MWe PWR plant. Some of components will be considered: Reactor Pressure Vessel, Main Coolant Lines, Reactor Coolant Pumps, Pressurizer and Steam Generators. Generally, variations in fluid pressure, fluid temperature and flowrate are used to represent the parameters for DTS. This report describes the method of DTS analysis and shows the evolution process of relevant thermal hydraulic parameters.


Sign in / Sign up

Export Citation Format

Share Document