An ID-Based Signature Scheme from Bilinear Pairing Based on Ex-K-Plus Problem

2011 ◽  
Vol 403-408 ◽  
pp. 929-934 ◽  
Author(s):  
Shivendu Mishra ◽  
Ritika Yaduvanshi ◽  
Anjani Kumar Rai ◽  
Nagendra Pratap Singh

In an ID-Based cryptosystem, identity of users are used to generate their public and private keys. In this system private key is generated by trusted private key generator (PKG). Unlike traditional PKI, this system enables the user to use public keys without exchanging public key certificates. With the exploitation of bilinear pairing, several secure and efficient ID-Based signature schemes have been proposed till now. In this paper, we have proposed an ID-Based signature scheme from bilinear pairing based on Ex-K-Plus problem. The proposed scheme is existentially unforgeable in the random oracle model under the hardness of K-CAA problem. Our scheme is also unforgeable due to hardness of ex-k-plus problem and computationally more efficient than other existing schemes.

2019 ◽  
Vol 53 (1-2) ◽  
pp. 67-84 ◽  
Author(s):  
Ronghai Gao ◽  
Jiwen Zeng ◽  
Lunzhi Deng

Threshold decryption allows only quorum cooperate users to decrypt ciphertext encrypted under a public key. However, such threshold decryption scheme cannot be applied well in this situation where all users have their public and private key pairs, but do not share any private keys corresponding to the public keys, such as mobile network featured with dynamic character. The direct way to achieve threshold decryption in this case is to divide the message into several pieces and then encrypt these pieces with the public keys of different users. However, this is very inefficient. Multireceiver threshold decryption scheme that could be applied efficiently in the above situation. Recently, some certificateless (ID-based) multireceiver threshold decryption (signcryption) schemes are introduced. But the bilinear pairings are used in most of the existing schemes. In this paper, we propose an efficient certificateless threshold decryption scheme using elliptic curve cryptography (ECC) without bilinear pairing. Performance analysis shows that the proposed scheme has lower computation cost than existing some threshold decryption schemes in both encryption and decryption process. Security analysis shows that our scheme is IND-CCA secure, and no one outside of selected receivers can disclose receivers identities, against the adversaries defined in CL-PKC system under the random oracle model.


2013 ◽  
Vol 457-458 ◽  
pp. 1262-1265
Author(s):  
Min Qin Chen ◽  
Qiao Yan Wen ◽  
Zheng Ping Jin ◽  
Hua Zhang

Based an identity-based signature scheme, we givea certificateless signature scheme. And then we propose a certificateless blind signature (CLBS) scheme in this paper. This schemeis more efficient than those of previous schemes by pre-computing the pairing e (P, P)=g. Based on CL-PKC, it eliminates theusing of certificates in the signature scheme with respect to thetraditional public key cryptography (PKC) and solves key escrowproblems in ID-based signature schemes. Meanwhile it retains themerits of BS schemes. The proposed CLBS scheme is existentialunforgeable in the random oracle model under the intractabilityof the q-Strong Diffie-Hellman problem.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qiang Yang ◽  
Daofeng Li

Digital signatures are crucial network security technologies. However, in traditional public key signature schemes, the certificate management is complicated and the schemes are vulnerable to public key replacement attacks. In order to solve the problems, in this paper, we propose a self-certified signature scheme over lattice. Using the self-certified public key, our scheme allows a user to certify the public key without an extra certificate. It can reduce the communication overhead and computational cost of the signature scheme. Moreover, the lattice helps prevent quantum computing attacks. Then, based on the small integer solution problem, our scheme is provable secure in the random oracle model. Furthermore, compared with the previous self-certified signature schemes, our scheme is more secure.


2007 ◽  
Vol 18 (05) ◽  
pp. 987-1004 ◽  
Author(s):  
ZHENCHUAN CHAI ◽  
ZHENFU CAO ◽  
XIAOLEI DONG

Threshold decryption allows a message encrypted under a public key to be read only when a quorum of users cooperate to decrypt the ciphertext. However, such threshold decryption scheme does not apply well in the situation where all the users have their own public/private key pairs, but not share any private key associated with a public key, such as mobile ad hoc network featured by its dynamic character. An immediate way to achieve threshold decryption in this situation is to split the message into pieces, then encrypt these pieces under the public keys of different users. However, it is not efficient. In this paper, we propose an efficient identity based multi-receiver threshold decryption scheme that could be applied efficiently in the above situation. We also define the security notions and prove the security in random oracle model. At last, we add the broadcast feature to the scheme, such that a message could be broadcast to any number of groups.


2011 ◽  
Vol 63-64 ◽  
pp. 785-788
Author(s):  
Fan Yu Kong ◽  
Lei Wu ◽  
Jia Yu

In 2009, R. Tso et al. proposed an efficient pairing-based short signature scheme which is provably secure in the Random Oracle Model. In this paper, we propose a new key substitution attack on Raylin Tso et al.’s short signature scheme. For a given message and the corresponding valid signature, the malicious attacker can generate a substituted public key. Everyone verifies the signature successfully with the malicious attacker’s substituted public key. Therefore, Raylin Tso et al.’s short signature scheme has a security flaw in the multi-user setting.


2011 ◽  
Vol 282-283 ◽  
pp. 307-311
Author(s):  
Li Zhen Ma

Any one who knows the signer’s public key can verify the validity of a given signature in partially blind signature schemes. This verifying universality may be used by cheats if the signed message is sensitive or personal. To solve this problem, a new convertible user designating confirmer partially blind signature, in which only the designated confirmer (designated by the user) and the user can verify and confirm the validity of given signatures and convert given signatures into publicly verifiable ones, is proposed. Compared with Huang et al.’s scheme, the signature size is shortened about 25% and the computation quantity is reduced about 36% in the proposed scheme. Under random oracle model and intractability of Discrete Logarithm Problem the proposed scheme is provably secure.


2011 ◽  
Vol 204-210 ◽  
pp. 1062-1065 ◽  
Author(s):  
Yu Qiao Deng

Digital signature schemes allow a signer to transform any message into a signed message, such that anyone can verify the validity of the signed message using the signer’s public key, but only the signer can generate signed messages. A proxy re-signature, which is a type of digital signatures, has significant applications in many areas. Proxy signature scheme was first introduced by Blaze, Bleumer, and Strauss, but that scheme is inefficient and with limited features. After that, some Proxy re-signature schemes were proposed by researchers. This paper constructs a blind proxy re-signatures scheme. Comparing to the previous proxy re-signature schemes, the scheme adds a message blinded feature, and then the security of the scheme is proven.


2010 ◽  
Vol 47 (1) ◽  
pp. 15-29
Author(s):  
Madeline González Muñiz ◽  
Rainer Steinwndt

Abstract In recent years, quite some progress has been made in understand- ing the security of encryption schemes in the presence of key-dependent plaintexts. Here, we motivate and explore the security of a setting, where an adversary against a signature scheme can access signatures on key-dependent messages. We propose a way to formalize the security of signature schemes in the pres- ence of key-dependent signatures (KDS). It turns out that the situation is quite different from key-dependent encryption: already to achieve KDS-security under non-adaptive chosen message attacks, the use of a stateful signing algorithm is inevitable-even in the random oracle model. After discussing the connection be- tween key-dependent signing and forward security, we present a compiler to lift any EUF-CMA secure one-time signature scheme to a forward secure signature scheme offering KDS-CMA security.


2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Yu Zhan ◽  
Baocang Wang

Certificateless aggregate signatures aggregate n signatures from n different users into one signature. Therefore, a verifier can judge whether all signatures are valid by verifying once. With this advantage, certificateless aggregate signatures are widely used in the environment of limited computing resources. Recently, a novel certificateless aggregate signature scheme was proposed by Kumar et al. This scheme’s security was claimed to be secure against two types of attackers under the random oracle model. In this paper, we indicate that their scheme is unable to achieve this security goal. We show an attack algorithm that the second type of attacker could forge a valid signature under an identity without the private key of the target user. Moreover, we demonstrate that the second type of attacker could forge a valid aggregate signature.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yingying Zhang ◽  
Jiwen Zeng ◽  
Wei Li ◽  
Huilin Zhu

Ring signature is a kind of digital signature which can protect the identity of the signer. Certificateless public key cryptography not only overcomes key escrow problem but also does not lose some advantages of identity-based cryptography. Certificateless ring signature integrates ring signature with certificateless public key cryptography. In this paper, we propose an efficient certificateless ring signature; it has only three bilinear pairing operations in the verify algorithm. The scheme is proved to be unforgeable in the random oracle model.


Sign in / Sign up

Export Citation Format

Share Document