Structural and Electronic Properties of Pt3 and Pt3M Clusters (M=Au, Ag, Sn, Fe)

2012 ◽  
Vol 463-464 ◽  
pp. 143-146
Author(s):  
Dong Mei Li

With density functional theory, the structural and electronic properties of Pt3 and Pt3M clusters (M=Au, Ag, Sn, Fe) have been studied. It is found that all the Pt3M clusters show planar and tetrahedral structures and their Pt-Pt bond lengths are larger than the bond lengths of Pt3. The effect of M doping on electronic properties of Pt3 clusters have been investigated. It is found that by adding one M atom, energy gaps of the corresponding clusters become smaller. The calculated results also indicate that M atom makes the highest energy level of Pt atoms shift highly, except for tetrahedral Pt3Au clusters. These may be good for analyzing adsorption problems

2018 ◽  
Vol 33 (1) ◽  
pp. 71
Author(s):  
Ali Hashem Essa ◽  
A. F. Jalbout

The structural and electronic properties of 1-(5-Hydroxymethyl - 4 –[ 5 – (5-oxo-5-piperidin- 1 -yl-penta- 1,3 -dienyl)-benzo [1,3] dioxol- 2 -yl]- tetrahydro -furan-2 -yl)-5-methy l-1Hpyrimidine-2,4dione (AHE) molecule have been investigated theoretically by performing density functional theory (DFT), and semi empirical molecular orbital calculations. The geometry of the molecule is optimized at the level of Austin Model 1 (AM1), and the electronic properties and relative energies of the molecules have been calculated by density functional theory in the ground state. The resultant dipole moment of the AHE molecule is about 2.6 and 2.3 Debyes by AM1 and DFT methods respectively, This property of AHE makes it an active molecule with its environment, that is AHE molecule may interacts with its environment strongly in solution.


2005 ◽  
Vol 16 (02) ◽  
pp. 271-280
Author(s):  
EFE YAZGAN ◽  
ŞAKIR ERKOÇ

The structural and electronic properties of ( C n Li )+ cluster ions with n =1–6 and n =20 have been investigated by performing density functional theory calculations at B3LYP level. The vibrational frequencies of the clusters are also calculated.


2020 ◽  
Vol 22 (42) ◽  
pp. 24471-24479 ◽  
Author(s):  
Asadollah Bafekry ◽  
Catherine Stampfl ◽  
Chuong Nguyen ◽  
Mitra Ghergherehchi ◽  
Bohayra Mortazavi

Density functional theory calculations are performed in order to study the structural and electronic properties of monolayer Pt2HgSe3. Effects of uniaxial and biaxial strain, layer thickness, electric field and out-of-plane pressure on the electronic properties are systematically investigated.


Sign in / Sign up

Export Citation Format

Share Document