Study on Genetic Fuzzy Wavelet Neural Network Controller of Robotic Manipulator

2012 ◽  
Vol 605-607 ◽  
pp. 1619-1624
Author(s):  
Yong Lin Wang ◽  
Dong Yun Wang

This paper deals with the tracking controller design of robotic manipulator using genetic algorithm (GA). A genetic fuzzy wavelet neural network (GFWNN) controller is designed and implemented based on MATLAB in this paper, whose parameters are optimized by GA. The structure and algorithm of fuzzy wavelet neural network (FWNN) are described at first. Then the key content of GA used in this paper and the steps for using GA to optimize FWNN are demonstrated. Finally, a numerical simulation of tracking control for 2-link robotic manipulator is given to verify the effectiveness of the proposed method.

Author(s):  
PENGFEI LIU ◽  
JIUQIANG HAN ◽  
JIANMEI MA ◽  
DONGLIN WANG

This paper presents a new reference trajectory and a fuzzy wavelet neural network controller to synthesize the gait of a five-link biped robot when walking on the level ground. Both the single support phase (SSP) and the double support phase (DSP) are considered. The gait of the biped can be determined when the trajectories of the hip and the swing limb are designed. The trajectories of the hip and the swing limb are approximated with the time polynomial functions. The coefficients of the functions are determined by the constraint equations cast in terms of coherent physical characteristics, such as repeatability, continuity, stability, and minimization of the effect of impact. The fuzzy wavelet neural network controller is trained by error back-propagation algorithm. Given the certain gait parameters such as the step length, maximum step height, walking speed, and so on, the control scheme can generate the smooth gait profiles. The simulation results show that the designed controller can follow the reference trajectories well.


2015 ◽  
Vol 764-765 ◽  
pp. 634-639
Author(s):  
Yen Bin Chen ◽  
Yung Lung Lee ◽  
Shou Jen Hsu ◽  
Chin Chun Chang ◽  
Yi Wei Chen

The study proposed adaptive wavelet neural network controller can achieve good and precise welding control performance and use synchrotron radiation research center developed multi-gun group automatic welding system to verify the validity of the research method. Multi-gun group welding system is applied in Taiwan Photon Source (TPS). Storage ring aluminum alloy vacuum chamber of Taiwan Photon Source .In the past aluminum alloy vacuum chamber welding, it all depends on the empirical welding rule of operator to give appropriate welding current, argon flow, wire feed speed and welding speed for control. Therefore, the paper uses automatic welding skill, which takes National Instruments PXI-8180 system as basic structure, and adaptive wavelet neural network controlled four optimized parameters, I.E. welding current, wire feed speed, flow rate of argon gas and welding speed, The vacuum chamber pressure value is also up to 6.2X10-10Torr/mA. It is successfully applied to the TPS system. Therefore, it can prove the effectiveness and practicality of the method proposed in this study.


2008 ◽  
Vol 159 (20) ◽  
pp. 2627-2649 ◽  
Author(s):  
Chun-Fei Hsu ◽  
Ping-Zong Lin ◽  
Tsu-Tian Lee ◽  
Chi-Hsu Wang

Sign in / Sign up

Export Citation Format

Share Document