A Resilient Particle Swarm Optimization Algorithm with Dynamically Changing Inertia Weight

2013 ◽  
Vol 712-715 ◽  
pp. 2423-2427
Author(s):  
Zhi Dong Wu ◽  
Sui Hua Zhou ◽  
Shi Min Feng ◽  
Zu Jing Xiao

To overcome the shortage that the particle swarm optimization is prone to trap into local extremum searching for the lost in population diversity, a strategy in which the velocity is not dependent on the size of distance between the individual and the optimal particle but only dependent on its direction is proposed. The average similarity of particles in the population is seem as the measure of population diversity and it is used to balance the global and local searching of the algorithm. Based on establishing the relationship between inertia weight and the measure of population diversity which has been inserted into the algorithm, A resilient particle swarm optimization algorithm with dynamically changing inertia weight (ARPSO) was proposed. ARPSO was applied in simulation experiment. The results show that the algorithm has the ability to avoid being trapped in local extremum and advance the probability of finding global optimum.

2013 ◽  
Vol 760-762 ◽  
pp. 2194-2198 ◽  
Author(s):  
Xue Mei Wang ◽  
Yi Zhuo Guo ◽  
Gui Jun Liu

Adaptive Particle Swarm Optimization algorithm with mutation operation based on K-means is proposed in this paper, this algorithm Combined the local searching optimization ability of K-means with the gobal searching optimization ability of Particle Swarm Optimization, the algorithm self-adaptively adjusted inertia weight according to fitness variance of population. Mutation operation was peocessed for the poor performative particle in population. The results showed that the algorithm had solved the poblems of slow convergence speed of traditional Particle Swarm Optimization algorithm and easy falling into the local optimum of K-Means, and more effectively improved clustering quality.


2013 ◽  
Vol 427-429 ◽  
pp. 1934-1938
Author(s):  
Zhong Rong Zhang ◽  
Jin Peng Liu ◽  
Ke De Fei ◽  
Zhao Shan Niu

The aim is to improve the convergence of the algorithm, and increase the population diversity. Adaptively particles of groups fallen into local optimum is adjusted in order to realize global optimal. by judging groups spatial location of concentration and fitness variance. At the same time, the global factors are adjusted dynamically with the action of the current particle fitness. Four typical function optimization problems are drawn into simulation experiment. The results show that the improved particle swarm optimization algorithm is convergent, robust and accurate.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Feng Qian ◽  
Mohammad Reza Mahmoudi ◽  
Hamïd Parvïn ◽  
Kim-Hung Pho ◽  
Bui Anh Tuan

Conventional optimization methods are not efficient enough to solve many of the naturally complicated optimization problems. Thus, inspired by nature, metaheuristic algorithms can be utilized as a new kind of problem solvers in solution to these types of optimization problems. In this paper, an optimization algorithm is proposed which is capable of finding the expected quality of different locations and also tuning its exploration-exploitation dilemma to the location of an individual. A novel particle swarm optimization algorithm is presented which implements the conditioning learning behavior so that the particles are led to perform a natural conditioning behavior on an unconditioned motive. In the problem space, particles are classified into several categories so that if a particle lies within a low diversity category, it would have a tendency to move towards its best personal experience. But, if the particle’s category is with high diversity, it would have the tendency to move towards the global optimum of that category. The idea of the birds’ sensitivity to its flying space is also utilized to increase the particles’ speed in undesired spaces in order to leave those spaces as soon as possible. However, in desirable spaces, the particles’ velocity is reduced to provide a situation in which the particles have more time to explore their environment. In the proposed algorithm, the birds’ instinctive behavior is implemented to construct an initial population randomly or chaotically. Experiments provided to compare the proposed algorithm with the state-of-the-art methods show that our optimization algorithm is one of the most efficient and appropriate ones to solve the static optimization problems.


PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0161558 ◽  
Author(s):  
Mohammad Javad Amoshahy ◽  
Mousa Shamsi ◽  
Mohammad Hossein Sedaaghi

Sign in / Sign up

Export Citation Format

Share Document