Riccati Equation Solutions to Higher Order Korteweg-de Vries Equation

2014 ◽  
Vol 926-930 ◽  
pp. 3240-3244
Author(s):  
Hong Lei Wang ◽  
Chun Huan Xiang

The traveling wave solutions to the heigher order Korteweg-de Vries equation is obtained by using Riccati equation. The method is straightforward and concise, the applications are promising to obtain traveling wave solutions of various partial differential equations. It is shown that the Riccati equation method, with the symbolic computation, provide an effective and powerful mathematical tools for solving such systems. The numerical simulation of the solutions are given for completeness.

2000 ◽  
Vol 24 (6) ◽  
pp. 371-377 ◽  
Author(s):  
Kenneth L. Jones ◽  
Xiaogui He ◽  
Yunkai Chen

This paper is concerned with periodic traveling wave solutions of the forced generalized nearly concentric Korteweg-de Vries equation in the form of(uη+u/(2η)+[f(u)]ξ+uξξξ)ξ+uθθ/η2=h0. The authors first convert this equation into a forced generalized Kadomtsev-Petviashvili equation,(ut+[f(u)]x+uxxx)x+uyy=h0, and then to a nonlinear ordinary differential equation with periodic boundary conditions. An equivalent relationship between the ordinary differential equation and nonlinear integral equations with symmetric kernels is established by using the Green's function method. The integral representations generate compact operators in a Banach space of real-valued continuous functions. The Schauder's fixed point theorem is then used to prove the existence of nonconstant solutions to the integral equations. Therefore, the existence of periodic traveling wave solutions to the forced generalized KP equation, and hence the nearly concentric KdV equation, is proved.


2016 ◽  
Vol 26 (8) ◽  
pp. 084312 ◽  
Author(s):  
Xiao-Jun Yang ◽  
J. A. Tenreiro Machado ◽  
Dumitru Baleanu ◽  
Carlo Cattani

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Sekson Sirisubtawee ◽  
Sanoe Koonprasert

We apply the G′/G2-expansion method to construct exact solutions of three interesting problems in physics and nanobiosciences which are modeled by nonlinear partial differential equations (NPDEs). The problems to which we want to obtain exact solutions consist of the Benny-Luke equation, the equation of nanoionic currents along microtubules, and the generalized Hirota-Satsuma coupled KdV system. The obtained exact solutions of the problems via using the method are categorized into three types including trigonometric solutions, exponential solutions, and rational solutions. The applications of the method are simple, efficient, and reliable by means of using a symbolically computational package. Applying the proposed method to the problems, we have some innovative exact solutions which are different from the ones obtained using other methods employed previously.


Sign in / Sign up

Export Citation Format

Share Document