multicomponent plasma
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 19)

H-INDEX

22
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7608
Author(s):  
Vasily Kozhevnikov ◽  
Andrey Kozyrev ◽  
Aleksandr Kokovin ◽  
Natalia Semeniuk

This paper is devoted to the study of collisionless multicomponent plasma expansion in vacuum discharges. Based on the fundamental principles of physical kinetics formulated for vacuum discharge plasma, an answer is given to the following question: What is the main mechanism of cathode plasma transport from cathode to anode, which ensures non-thermal metallic positive ion movement? Theoretical modeling is provided based on the Vlasov–Poisson system of equations for a current flow in a planar vacuum discharge gap. It was shown that the non-thermal plasma expansion is of a purely electrodynamic nature, caused by the formation of a “potential hump” in the interelectrode space and its subsequent movement under certain conditions consistent with plasma electrodynamic transportation. The presented results reveal two cases of the described phenomenon: (1) the dynamics of single-component cathode plasma and (2) multicomponent plasma (consisting of multiple charged ions) expansion.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Youichi Sakawa ◽  
Yutaka Ohira ◽  
Rajesh Kumar ◽  
Alessio Morace ◽  
Leonard N. K. Döhl ◽  
...  

2021 ◽  
Vol 67 (6 Nov-Dec) ◽  
Author(s):  
U.M. Abdelsalam

Using the reductive perturbation method, we have derived the Zakharov-Kuznetsov (ZK) equation for a multi-component plasma model consisting of electrons, positrons and the uid ions with positive and negative charges. The extended homogenous balance method has been applied to obtain the soliton solution in addition to many traveling wave solutions. various physical parameters have different effects on the profile of the solitary wave pulses which can show the propagation of the ion acoustic waves in laboratory plasmas and many astrophysical plasma systems as in Earth's ionosphere.


Author(s):  
Subrata Roy ◽  
Sandip Saha ◽  
Santanu Raut ◽  
Apurba Das

The time-fractional Gardner Burger (TFGB) equation is an efficient model for studying nonlinear fluctuations of different types of wave profiles, such as the gravity solitary waves in the ocean, ion-acoustic wave (IAW) in a plasma environment, etc. Here, to build an example of the existence of the classical Gardner Burger (GB) equation, a multi-component plasma environment is considered and a classical GB equation is derived by employing reductive perturbation technique (RPT) from the basic governing equation. Further, the classical GB equation is converted into the TFGB equation by applying Agrawal’s approach, where the Riesz fractional derivative is adopted on the time-fractional term. A new approach using the improved Bernoulli sub-equation function method (IBSEFM) is carried out to solve the TFGB equation. Finally, some $2D$ and $3D$ graphs are plotted through which the physical structures of the solution are explored and the effect of the Burgers term and fractional order of the equation are determined.


2021 ◽  
Vol 914 (1) ◽  
pp. 52
Author(s):  
Gregory D. Fleishman ◽  
Alexey A. Kuznetsov ◽  
Enrico Landi

2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Rajesh Kumar ◽  
Youichi Sakawa ◽  
Takayoshi Sano ◽  
Leonard N. K. Döhl ◽  
Nigel Woolsey ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Pallabi Pathak

The effect of enhanced Landau damping on the evolution of ion acoustic Peregrine soliton in multicomponent plasma with negative ions has been investigated. The experiment is performed in a multidipole double plasma device. To enhance the ion Landau damping, the temperature of the ions is increased by applying a continuous sinusoidal signal of frequency close to the ion plasma frequency ∼1 MHz to the separation grid. The spatial damping rate of the ion acoustic wave is measured by interferometry. The damping rate of ion acoustic wave increases with the increase in voltage of the applied signal. At a higher damping rate, the Peregrine soliton ceases to show its characteristics leaving behind a continuous envelope.


Sign in / Sign up

Export Citation Format

Share Document