Travel Time Estimation on a Link without Real-Time Data by Correlated Links

2014 ◽  
Vol 931-932 ◽  
pp. 531-535
Author(s):  
Narong Intiruk ◽  
Sukree Sinthupinyo ◽  
Wasan Pattara-Atikom

This paper presents a novel method to estimate travel time on a road segment using information from other road segments. This method is useful especially in the case that real-time traffic on such road segment is not available. The proposed method is based on the correlation between the road segment itself and the most related road segment. We measure the relation between road segments by dynamic time warping algorithm and apply the K-Nearest-Neighbor algorithm to select the best neighbor segment to estimate the travel time on the target road segment. We found that the best attributes set that can measure the correlation between road sections consists of location of the road segments, day of the week, and current time. The link correlation results can be used as reference data to determine the travel time on the roads that are related.

2019 ◽  
Vol 13 (1) ◽  
pp. 141-150
Author(s):  
Jinhwan Jang

Background: Real-time Travel Time (TT) information has become an essential component of daily life in modern society. With reliable TT information, road users can increase their productivity by choosing less congested routes or adjusting their trip schedules. Drivers normally prefer departure time-based TT, but most agencies in Korea still provide arrival time-based TT with probe data from Dedicated Short-Range Communications (DSRC) scanners due to a lack of robust prediction techniques. Recently, interest has focused on the conventional k-nearest neighbor (k-NN) method that uses the Euclidean distance for real-time TT prediction. However, conventional k-NN still shows some deficiencies under certain conditions. Methods: This article identifies the cases where conventional k-NN has shortcomings and proposes an improved k-NN method that employs a correlation coefficient as a measure of distance and applies a regression equation to compensate for the difference between current and historical TT. Results: The superiority of the suggested method over conventional k-NN was verified using DSRC probe data gathered on a signalized suburban arterial in Korea, resulting in a decrease in TT prediction error of 3.7 percent points on average. Performance during transition periods where TTs are falling immediately after rising exhibited statistically significant differences by paired t-tests at a significance level of 0.05, yielding p-values of 0.03 and 0.003 for two-day data. Conclusion: The method presented in this study can enhance the accuracy of real-time TT information and consequently improve the productivity of road users.


Author(s):  
Vasileios Zeimpekis

Effective travel time prediction is of great importance for efficient real-time management of freight deliveries, especially in urban networks. This is due to the need for dynamic handling of unexpected events, which is an important factor for successful completion of a delivery schedule in a predefined time period. This chapter discusses the prediction results generated by two travel time estimation methods that use historical and real-time data respectively. The first method follows the k-nn model, which relies on the non-parametric regression method, whereas the second one relies on an interpolation scheme which is employed during the transmission of real-time traffic data in fixed intervals. The study focuses on exploring the interaction of factors that affect prediction accuracy by modelling both prediction methods. The data employed are provided by real-life scenarios of a freight carrier and the experiments follow a 2-level full factorial design approach.


2020 ◽  
Vol 54 (2) ◽  
pp. 95-106 ◽  
Author(s):  
Xiaohui Lin ◽  
Jianmin Xu

With the increasing scope of traffic signal control, in order to improve the stability and flexibility of the traffic control system, it is necessary to rationally divide the road network according to the structure of the road network and the characteristics of traffic flow. However, road network partition can be regarded as a clustering process of the division of road segments with similar attributes, and thus, the clustering algorithm can be used to divide the sub-areas of road network, but when Kmeans clustering algorithm is used in road network partitioning, it is easy to fall into the local optimal solution. Therefore, we proposed a road network partitioning method based on the Canopy-Kmeans clustering algorithm based on the real-time data collected from the central longitude and latitude of a road segment, average speed of a road segment, and average density of a road segment. Moreover, a vehicle network simulation platform based on Vissim simulation software is constructed by taking the real-time collected data of central longitude and latitude, average speed and average density of road segments as sample data. Kmeans and Canopy-Kmeans algorithms are used to partition the platform road network. Finally, the quantitative evaluation method of road network partition based on macroscopic fundamental diagram is used to evaluate the results of road network partition, so as to determine the optimal road network partition algorithm. Results show that these two algorithms have divided the road network into four sub-areas, but the sections contained in each sub-area are slightly different. Determining the optimal algorithm on the surface is impossible. However, Canopy-Kmeans clustering algorithm is superior to Kmeans clustering algorithm based on the quantitative evaluation index (e.g. the sum of squares for error and the R-Square) of the results of the subareas. Canopy-Kmeans clustering algorithm can effectively partition the road network, thereby laying a foundation for the subsequent road network boundary control.


Author(s):  
Wen Zhang ◽  
Yang Wang ◽  
Xike Xie ◽  
Chuancai Ge ◽  
Hengchang Liu

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Mingjun Deng ◽  
Shiru Qu

There are many short-term road travel time forecasting studies based on time series, but indeed, road travel time not only relies on the historical travel time series, but also depends on the road and its adjacent sections history flow. However, few studies have considered that. This paper is based on the correlation of flow spatial distribution and the road travel time series, applying nearest neighbor and nonparametric regression method to build a forecasting model. In aspect of spatial nearest neighbor search, three different space distances are defined. In addition, two forecasting functions are introduced: one combines the forecasting value by mean weight and the other uses the reciprocal of nearest neighbors distance as combined weight. Three different distances are applied in nearest neighbor search, which apply to the two forecasting functions. For travel time series, the nearest neighbor and nonparametric regression are applied too. Then minimizing forecast error variance is utilized as an objective to establish the combination model. The empirical results show that the combination model can improve the forecast performance obviously. Besides, the experimental results of the evaluation for the computational complexity show that the proposed method can satisfy the real-time requirement.


Sign in / Sign up

Export Citation Format

Share Document