dedicated short range communications
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 20)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 56 (4) ◽  
pp. 534-563
Author(s):  
Sumendra Yogarayan ◽  
Siti Fatimah Abdul Razak ◽  
Afizan Azman ◽  
Mohd. Fikri Azli Abdullah

Vehicle to Everything (V2X) communication technology assesses the potential as the new phenomenon for Intelligent Transportation Systems (ITS) in the context of vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P), and vehicle-to-network (V2N). Dedicated Short-Range Communications (DSRC) is the conventional vehicular communication standard for ITS. The cellular network based on 4G/5G for ITS deployment has become a competitor to DSRC. Recent advancements in technologies have motivated the research community to develop a hybrid DSRC, and cellular networks approach to support reliable ITS applications. Nevertheless, as new techniques come forward, the technical and regulatory challenges may also vary across countries. Given that the existing comparative studies have not been covered as a whole, we evaluated the V2X communication technology to classify the adaptability of DSRC, cellular networks, and hybrid methods. The study also includes available V2X technology platforms and products. In addition, the challenges of deployments are also depicted in this study. The outcome indicates that many automotive industries and telecommunication providers recognize V2X substantial effect on ITS. The work is underway to decide which capabilities will be added since this is a long-term benefit for our future transportation.


Author(s):  
Anjan Rayamajhi ◽  
Animesh Balse ◽  
Edward M. Leslie ◽  
Sudhakar Nallamothu ◽  
Hyungjun Park

Connected and automated vehicle (CAV) technology has the potential to improve transportation systems. CAV technology has been shown to bring benefits in transportation mobility, safety, and the environment. The signal phase and timing (SPaT) message is a fundamental and critical CAV message, as it enables connectivity between vehicles and infrastructure. Because SPaT messages can be transmitted using different wireless communication technologies, it is necessary to study the latency and coverage of SPaT messages in such cases. This study investigates performances of SPaT messages transmitted using two popular communication technologies in CAVs: dedicated short-range communications (DSRC) and cellular 3rd generation partnership project (3GPP)/4th generation long-term evolution (4G/LTE). To provide a robust evaluation, SPaT data transmitted by DSRC and cellular networks were collected in the field at various intersections in Northern Virginia and used to compare performance in terms of latency and distance coverage. The results showed that the latency experienced by SPaT messages over cellular networks is well below the 100 ms required by most infrastructure applications, implying that cellular communications may be used for many vehicle-to-infrastructure (V2I) safety and mobility applications. The feasibility of several CAV applications was investigated based on the network performance observed in this study. Specifically, several safety, mobility, and environmental applications were tested to determine whether DSRC and cellular networks could satisfy their requirements for network performance. The study also provides conclusive remarks on whether the wireless communication technologies are capable of supporting safety, mobility, and environmental applications.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4702
Author(s):  
Karolina Krzykowska-Piotrowska ◽  
Ewa Dudek ◽  
Mirosław Siergiejczyk ◽  
Adam Rosiński ◽  
Wojciech Wawrzyński

The increase in the role of companion robots in everyday life is inevitable, and their safe communication with the infrastructure is one of the fundamental challenges faced by designers. There are many challenges in the robot’s communication with the environment, widely described in the literature on the subject. The threats that scientists believe have the most significant impact on the robot’s communication include denial-of-service (DoS) attacks, satellite signal spoofing, external eavesdropping, spamming, broadcast tampering, and man-in-the-middle attacks. In this article, the authors attempted to identify communication threats in the new robot-to-infrastructure (R2I) model based on available solutions used in transport, e.g., vehicle-to-infrastructure (V2I), taking into account the threats already known affecting the robot’s sensory systems. For this purpose, all threats that may occur in the robot’s communication with the environment were analyzed. Then the risk analysis was carried out, determining, in turn, the likelihood of potential threats occurrence, their consequence, and ability of detection. Finally, specific methods of responding to the occurring threats are proposed, taking into account cybersecurity aspects. A critical new approach is the proposal to use communication and protocols so far dedicated to transport (IEEE 802.11p WAVE, dedicated short-range communications (DSRC)). Then, the companion’s robot should be treated as a pedestrian and some of its sensors as an active smartphone.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5095
Author(s):  
Tibor Petrov ◽  
Lukas Sevcik ◽  
Peter Pocta ◽  
Milan Dado

For more than a decade, communication systems based on the IEEE 802.11p technology—often referred to as Dedicated Short-Range Communications (DSRC)—have been considered a de facto industry standard for Vehicle-to-Infrastructure (V2I) communication. The technology, however, is often criticized for its poor scalability, its suboptimal channel access method, and the need to install additional roadside infrastructure. In 3GPP Release 14, the functionality of existing cellular networks has been extended to support V2X use cases in an attempt to address the well-known drawbacks of the DSRC. In this paper, we present a complex simulation study in order to benchmark both technologies in a V2I communication context and an urban scenario. In particular, we compare the DSRC, LTE in the infrastructural mode (LTE-I), and LTE Device-to-Device (LTE-D2D) mode 3 in terms of the average end-to-end delay and Packet Delivery Ratio (PDR) under varying communication conditions achieved through the variation of the communication perimeter, message generation frequency, and road traffic intensity. The obtained results are put into the context of the networking and connectivity requirements of the most popular V2I C-ITS services. The simulation results indicate that only the DSRC technology is able to support the investigated V2I communication scenarios without any major limitations, achieving an average end-to-end delay of less than 100 milliseconds and a PDR above 96% in all of the investigated simulation scenarios. The LTE-I is applicable for the most of the low-frequency V2I services in a limited communication perimeter (<600 m) and for lower traffic intensities (<1000 vehicles per hour), achieving a delay pf less than 500 milliseconds and a PDR of up to 92%. The LTE-D2D in mode 3 achieves too great of an end-to-end delay (above 1000 milliseconds) and a PDR below 72%; thus, it is not suitable for the V2I services under consideration in a perimeter larger than 200 m. Moreover, the LTE-D2D mode 3 is very sensitive to the distance between the transmitter and its serving eNodeB, which heavily impacts the PDR achieved.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 706
Author(s):  
M. Nadeem Ahangar ◽  
Qasim Z. Ahmed ◽  
Fahd A. Khan ◽  
Maryam Hafeez

The Department of Transport in the United Kingdom recorded 25,080 motor vehicle fatalities in 2019. This situation stresses the need for an intelligent transport system (ITS) that improves road safety and security by avoiding human errors with the use of autonomous vehicles (AVs). Therefore, this survey discusses the current development of two main components of an ITS: (1) gathering of AVs surrounding data using sensors; and (2) enabling vehicular communication technologies. First, the paper discusses various sensors and their role in AVs. Then, various communication technologies for AVs to facilitate vehicle to everything (V2X) communication are discussed. Based on the transmission range, these technologies are grouped into three main categories: long-range, medium-range and short-range. The short-range group presents the development of Bluetooth, ZigBee and ultra-wide band communication for AVs. The medium-range examines the properties of dedicated short-range communications (DSRC). Finally, the long-range group presents the cellular-vehicle to everything (C-V2X) and 5G-new radio (5G-NR). An important characteristic which differentiates each category and its suitable application is latency. This research presents a comprehensive study of AV technologies and identifies the main advantages, disadvantages, and challenges.


Author(s):  
Hasita Kaja ◽  
Cory Beard

Vehicular ad-hoc networks (VANETs) have been an important part of intelligent transport systems (ITS). Developing a reliable network for vehicle-to-vehicle communication is a crucial part of network deployment. In the present paper, the authors are discussing a layered approach towards reliability of VANETs. This paper will consider different layers of the dedicated short-range communications (DSRC) protocol stack and discuss key reliability indicators in each layer. This layered approach towards computing reliability results in more practical probability calculations and improves the minimum probability of reliability achievable by the VANETs. The authors discuss about different techniques to increase the reliability of VANETs. In the future works, the goal is to calculate probability density and distribution functions of reliability at each layer and derive combined reliability and availability of a given vehicular ad-hoc network (VANET).


Sign in / Sign up

Export Citation Format

Share Document