Effect of Control Parameters of Secondary Jet on Fluidic Thrust Vectoring

2014 ◽  
Vol 998-999 ◽  
pp. 613-616
Author(s):  
Li Li ◽  
Dong Ping Wang ◽  
Tsutomu Saito

The flow field was simulated in a 2D convergent-divergent nozzle, for fluidic thrust vectoring with N-S method. Based on the specific design, the effects of control parameters of secondary jet injection is investigated, and a method is proposed to calculate the initial state of secondary jet, which is different from original hypothesis of stagnation. The results showed that the two methods have closed results and the stagnation hypothesis is suitable for the calculation of the initial state of secondary jet.

Author(s):  
Michele Ferlauto ◽  
Andrea Ferrero ◽  
Matteo Marsicovetere ◽  
Roberto Marsilio

Aerospike nozzles represent an interesting solution for Single-Stage-To-Orbit or clustered launchers owing to their self-adapting capability, which can lead to better performance compared to classical nozzles. Furthermore, they can provide thrust vectoring in several ways. A simple solution consists of applying differential throttling when multiple combustion chambers are used. An alternative solution is represented by fluidic thrust vectoring, which requires the injection of a secondary flow from a slot. In this work, the flow field in a linear aerospike nozzle was investigated numerically and both differential throttling and fluidic thrust vectoring were studied. The flow field was predicted by solving the Reynolds-averaged Navier–Stokes equations. The thrust vectoring performance was evaluated in terms of side force generation and axial force reduction. The effectiveness of fluidic thrust vectoring was investigated by changing the mass flow rate of secondary flow and injection location. The results show that the response of the system can be non-monotone with respect to the mass flow rate of the secondary injection. In contrast, differential throttling provides a linear behaviour but it can only be applied to configurations with multiple combustion chambers. Finally, the effects of different plug truncation levels are discussed.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042199813
Author(s):  
Fei Xue ◽  
Gu Yunsong ◽  
Yuchao Wang ◽  
Han Qin

In view of the control effects of fluidic thrust vector technology for low-speed aircraft at high altitude/low density and low altitude/high density are studied. The S-A model of FLUENT software is used to simulate the flow field inside and outside the nozzle with variable control surface parameters, and the relationship between the area of control surface and the deflection effect of main flow at different altitudes is obtained. It is found that the fluidic thrust vectoring nozzle can effectively control the internal flow in the ground state and the high altitude/low density state. and the mainstream deflection angle can be continuously adjusted. The maximum deflection angle of the flow in the ground state is 21.86°, and the maximum deviation angle of the 20 km high altitude/low density state is 18.80°. The deflecting of the inner flow of the nozzle is beneficial to provide more lateral force and lateral torque for the aircraft. The high altitude/low density state is taken as an example. When the internal flow deflects 18.80°, the lateral force is 0.32 times the main thrust. For aircraft with high altitude and low density, sufficient lateral and lateral torque can make the flying aircraft more flexible, which can make up the shortcomings of the conventional rudder failure and even replace the conventional rudder surface.


2020 ◽  
Author(s):  
Avinash Jammalamadaka ◽  
Gregory M. Laskowski ◽  
Yanbing Li ◽  
James Kopriva ◽  
Pradeep Gopalakrishnan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document