scholarly journals Differential Throttling and Fluidic Thrust Vectoring in a Linear Aerospike

Author(s):  
Michele Ferlauto ◽  
Andrea Ferrero ◽  
Matteo Marsicovetere ◽  
Roberto Marsilio

Aerospike nozzles represent an interesting solution for Single-Stage-To-Orbit or clustered launchers owing to their self-adapting capability, which can lead to better performance compared to classical nozzles. Furthermore, they can provide thrust vectoring in several ways. A simple solution consists of applying differential throttling when multiple combustion chambers are used. An alternative solution is represented by fluidic thrust vectoring, which requires the injection of a secondary flow from a slot. In this work, the flow field in a linear aerospike nozzle was investigated numerically and both differential throttling and fluidic thrust vectoring were studied. The flow field was predicted by solving the Reynolds-averaged Navier–Stokes equations. The thrust vectoring performance was evaluated in terms of side force generation and axial force reduction. The effectiveness of fluidic thrust vectoring was investigated by changing the mass flow rate of secondary flow and injection location. The results show that the response of the system can be non-monotone with respect to the mass flow rate of the secondary injection. In contrast, differential throttling provides a linear behaviour but it can only be applied to configurations with multiple combustion chambers. Finally, the effects of different plug truncation levels are discussed.

2018 ◽  
Vol 8 (9) ◽  
pp. 1413 ◽  
Author(s):  
Dan Yao ◽  
Kwongi Lee ◽  
Minho Ha ◽  
Cheolung Cheong ◽  
Inhiug Lee

A new pump, called the hybrid airlift-jet pump, is developed by reinforcing the advantages and minimizing the demerits of airlift and jet pumps. First, a basic design of the hybrid airlift-jet pump is schematically presented. Subsequently, its performance characteristics are numerically investigated by varying the operating conditions of the airlift and jet parts in the hybrid pump. The compressible unsteady Reynolds-averaged Navier-Stokes equations, combined with the homogeneous mixture model for multiphase flow, are used as the governing equations for the two-phase flow in the hybrid pump. The pressure-based methods combined with the Pressure-Implicit with Splitting of Operators (PISO) algorithm are used as the computational fluid dynamics techniques. The validity of the present numerical methods is confirmed by comparing the predicted mass flow rate with the measured ones. In total, 18 simulation cases that are designed to represent the various operating conditions of the hybrid pump are investigated: eight of these cases belong to the operating conditions of only the jet part with different air and water inlet boundary conditions, and the remaining ten cases belong to the operating conditions of both the airlift and jet parts with different air and water inlet boundary conditions. The mass flow rate and the efficiency are compared for each case. For further investigation into the detailed flow characteristics, the pressure and velocity distributions of the mixture in a primary pipe are compared. Furthermore, a periodic fluctuation of the water flow in the mass flow rate is found and analyzed. Our results show that the performance of the jet or airlift pump can be enhanced by combining the operating principles of two pumps into the hybrid airlift-jet pump, newly proposed in the present study.


2020 ◽  
Vol 40 (1) ◽  
pp. 59-66
Author(s):  
Abderrahmane Chachoua ◽  
Mohamed Kamal Hamidou ◽  
Mohammed Hamel

The design for better performance of the spiral housing volute used commonly in radial and mixed inflow gas turbines is of prime importance as it affects the machine stage at both design and off design conditions. The tongue of the scroll divides the flow into two streams, and represents a severe source of disturbances, in terms of thermodynamic parameter uniformity, maximum kinetic energy, the right angle of attack to the rotor and minimum losses. Besides, the volute suffers an undesirable effect due to the recirculating mass flow rate in near bottom vicinity of the tongue. The present project is an attempt to design a tongue fitted with cylindrical holes traversing normal to the stream wise direction, where on account of the large pressure difference between the top and the bottom sides of the tongue will force the recirculating flow to go through the rotor inlet. This possibility with its limitations has not yet been explored. A numerical simulation is performed which might provide our suitable objectives. To achieve this goal the ANSYS code is used to build the geometry, generate the mesh, and to simulate the flow by solving numerically the averaged Navier Stokes equations. Apparently, the numerical results show evidence of favorable impact in using porous tongue. The realization of a contact between the main and recirculation flow by drilled holes on the tongue surface leads to a flow field uniformity, a reduction in the magnitude of the loss coefficient, and a 20 % reduction in the recirculating mass flow rate.


Author(s):  
Steven W. Burd ◽  
Terrence W. Simon

Film cooling and secondary flows are major contributors to aerodynamic losses in turbine passages. This is particularly true in low aspect ratio nozzle guide vanes where secondary flows can occupy a large portion of the passage flow field. To reduce losses, advanced cooling concepts and secondary flow control techniques must be considered. To this end, combustor bleed cooling flows introduced through an inclined slot upstream of the airfoils in a nozzle passage were experimentally investigated. Testing was performed in a large-scale, high-pressure turbine nozzle cascade comprised of three airfoils between one contoured and one flat endwall. Flow was delivered to this cascade with high-level (∼9%), large-scale turbulence at a Reynolds number based on inlet velocity and true chord length of 350,000. Combustor bleed cooling flow was injected through the contoured endwall upstream of the contouring at bleed-to-core mass flow rate ratios ranging from 0 to 6%. Measurements with triple-sensor, hot-film anemometry characterize the flow field distributions within the cascade. Total and static pressure measurements document aerodynamic losses. The influences of bleed mass flow rate on flow field mean streamwise and cross-stream velocities, turbulence distributions, and aerodynamic losses are discussed. Secondary flow features are also described through these measurements. Notably, this study shows that combustor bleed cooling flow imposes no aerodynamic penalty. This is atypical of schemes where coolant is introduced within the passage for the purpose of endwall cooling. Also, instead of being adversely affected by secondary flows, this type of cooling is able to reduce secondary flow effects.


2008 ◽  
Vol 112 (1127) ◽  
pp. 17-25 ◽  
Author(s):  
A. Banazadeh ◽  
F. Saghafi ◽  
M. Ghoreyshi ◽  
P. Pilidis

Abstract This paper presents the application of a relatively new technique of fluidic thrust-vectoring (FTV), named Co-flow, for a small gas-turbines. The performance is obtained via experiment and computational fluid dynamics (CFD). The effects of a few selected parameters including the engine throttle setting, the secondary air mass-flow rate and the secondary slot height upon thrust-vectoring performance are provided. Thrust vectoring performance is characterised by the ability of the system to deflect the engine thrust with respect to the delivered secondary air mass-flow rate. The experimental study was conducted under static conditions in an outdoor environment at Cranfield University workshop that was especially designed for this purpose. As part of this investigation, the system was modelled by CFD techniques, using Pointwise’s Gridgen software and the three-dimensional flow solver, Fluent. Also, Cranfield’s gas-turbine performance code (TurboMatch) was utilised to estimate boundary conditions for the CFD analysis with respect to the integrated nozzle. The presented technique is easy-to-use approach and offers better result for thrust-vectoring problems than previously published works. Experimental results do show the overall viability of the blowing slot mechanism as a means of vectoring the engine thrust, with the current configuration. Computational predictions are shown to be consistent with the experimental observations and make the CFD model a reliable tool for predicting Co-flow fluidic thrust-vectoring performance of similar systems.


Author(s):  
Bernhard Semlitsch ◽  
Estelle Laurendeau ◽  
Mihai Mihăescu

A jet pump consists mainly of a convergent-divergent Venturi shaped duct where a primary stream is applied with the role of entraining a secondary jet. Due to their simple and reliable concept, jet pumps are used in miscellaneous applications. Performance optimization of a jet pump has to be performed for various operation conditions. Thus, numerically robust and cheap models, able to predict accurately the performance parameters of such devices are necessary. Reynolds Averaged Navier-Stokes based formulations are computationally efficient to predict the performance of a jet pump. However, these simulations rely on turbulence closure coefficients, which need to be validated with experimental observations. Large Eddy Simulation solves the most energetic structures in the flow field and it can be used to capture the flow dynamics. On the experimental side, confined geometries challenge the investigation capabilities to capture the flow field accurately and in all the details. The flow field in the jet pump is investigated using Large Eddy Simulation approach and a steady state Reynolds Averaged Navier-Stokes formulation. The flow field solutions obtained with the two numerical tools are compared. A reasonable agreement for the velocity and pressure contours could be achieved. However, the turbulence kinetic energy distribution and the entrained mass flow rate are predicted to be distinct. The difference in entrained mass flow rate leads to differences in jet pump efficiency estimation.


Author(s):  
Yang Chen ◽  
Jun Li ◽  
Chaoyang Tian ◽  
Gangyun Zhong ◽  
Xiaoping Fan ◽  
...  

The aerodynamic performance of three-stage turbine with different types of leakage flows was experimentally and numerically studied in this paper. The leakage flows of three-stage turbine included the shroud seal leakage flow between the rotor blade tip and case, the diaphragm seal leakage flow between the stator blade diaphragm and shaft, as well as the shaft packing leakage flow and the gap leakage flow between the rotor blade curved fir-tree root and wheel disk. The total aerodynamic performance of three-stage turbine including leakage flows was firstly experimentally measured. The detailed flow field and aerodynamic performance were also numerically investigated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) and S-A turbulence model. The numerical mass flow rate and efficiency showed well agreement with experimental data. The effects of leakage flows between the fir-tree root and the wheel disk were studied. All leakage mass flow fractions, including the mass flow rate in each hole for all sets of root gaps were given for comparison. The effect of leakage flow on the aerodynamic performance of three-stage was illustrated and discussed.


2018 ◽  
Vol 20 (6) ◽  
pp. 624-639 ◽  
Author(s):  
Kang Song ◽  
Ben Zhao ◽  
Harold Sun ◽  
Weilin Yi

Turbocharger compressor, when fitted to a vehicle, usually operates with a curved inlet pipe which leads to distorted inlet flow field, hence deteriorating compressor flow capability. During the measurement of compressor performance, turbocharger-engine matching and controller design, the inlet flow field is, however, assumed to be uniform, which deviates from the real-world conditions. Consequently, the overall system performance could be compromised if the inlet distortion effect is ignored. To address this issue, in this article, a turbomachinery physics-based zero-dimensional model was proposed for the mass flow rate of a compressor with distorted inlet flow field due to 90° and 180° bent inlet pipe. The non-uniform flow is approximated as two-zone flow field, similar to parallel compressors, with the total pressure deviation between two zones modeled as a function of the flow velocity and pipe geometry. For each flow zone, the corresponding mass flow rate is estimated by approximating each sub-compressor as an adiabatic nozzle, where the fluid is driven by external work delivered by a compressor wheel governed by Euler’s turbomachinery equation. By including turbomachinery physics and compressor geometry information into the modeling, the model achieves high fidelity in compressor map interpretation and extrapolation, which is validated in experiments and the three-dimensional computational fluid dynamic simulation.


Author(s):  
Timothe´e Ewart ◽  
Irina A. Graour ◽  
Pierre Perrier ◽  
J. Gilbert Me´olans

An experimental investigation in a single silica microtube in isothermal stationary flow for various gases is made from the hydrodynamic to the near free molecular regime to study the reflection/accommodation process at the wall. This kind of investigation requires, more than other Micro-Electro-Mechanical-Systems (MEMS) experiments, a powerful experimental platform to measure very small mass flow rate. A global analytic expression, based on the Navier-Stokes (NS) equations with second order boundary conditions, is used to yield the Tangential Momentum Accommodation Coefficient (TMAC) in 0.003–0.3 Knudsen number range. Otherwise, the experimental results of the mass flow rate is compared with theoretical values calculated from kinetic approaches using variable TMAC as fitting parameter over the 0.3–30 Knudsen number range. Finally, whatever the theoretical approach the TMAC values obtained from the different gas-surface pairs are rather close one to other, but the TMAC values seem decreasing when the molecular mass increases.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Deb Banerjee ◽  
Rick Dehner ◽  
Ahmet Selamet ◽  
Kevin Tallio ◽  
Keith Miazgowicz ◽  
...  

Abstract The flow field at the inlet of a turbocharger compressor has been studied through stereoscopic particle image velocimetry (SPIV) experiments under different operating conditions. It is found that the flow field is quite uniform at high mass flow rates; but as the mass flow rate is reduced, flow reversal from the impeller is observed as an annular ring at the periphery of the inlet duct. The inception of flow reversal is observed to occur in the mid-flow operating region, near peak efficiency, and corresponds to an incidence angle of about 15.5 deg at the inducer blade tips at all tested speeds. This reversed flow region is marked with high tangential velocity and rapid fluctuations. It grows in strength with reducing mass flow rate and imparts some of its angular momentum to the forward flow due to mixing. The penetration depth of the reversed flow upstream from the inducer plane is found to increase quadratically with decreasing flow rate.


2012 ◽  
Vol 698 ◽  
pp. 406-422 ◽  
Author(s):  
Thomas Veltzke ◽  
Jorg Thöming

AbstractIn microducts deviation from continuum flow behaviour of a gas increases with rarefaction. When using Navier–Stokes equations to calculate a flow under slightly and moderately rarefied conditions, slip boundary conditions are used which in turn refer to the tangential momentum accommodation coefficient (TMAC). Here we demonstrate that, in the so-called slip and transition regime, the flow in microducts can be reliably described by a consistently non-empirical model without considering the TMAC. We obtain this equation by superposition of convective transport and Fickian diffusion using two-dimensional solutions of Navier–Stokes equations and a description for the Knudsen diffusion coefficient as derived from kinetic theory respectively. For a wide variety of measurement series found in the literature the calculation predicts the data accurately. Surprisingly only size of the duct, temperature, gas properties and inlet and outlet pressure are necessary to calculate the resulting mass flow by means of a single algebraic equation. From this, and taking the discrepancies of the TMAC concerning surface roughness and nature of the gases into account, we could conclude that neither the diffusive proportions nor the total mass flow rates are influenced by surface topology and chemistry at Knudsen numbers below unity. Compared to the tube geometry, the model slightly underestimates the flow rate in rectangular channels when rarefaction increases. Likewise, the dimensionless mass flow rate and the diffusive proportion of the total flow are distinctly higher in a tube. Thus the cross-sectional geometry has a significant influence on the transport mechanisms under rarefied conditions.


Sign in / Sign up

Export Citation Format

Share Document