Physical-Chemical and Pyrometallurgical Estimation of Processing of Complex Ores with Extraction of Iron, Vanadium, Titanium

2021 ◽  
Vol 407 ◽  
pp. 41-50
Author(s):  
Andrey N. Dmitriev ◽  
Galina Yu. Vitkina ◽  
R.V. Alektorov ◽  
E.A. Vyaznikova

The metallurgical characteristics of pellets (reducibility, strength after reaction, softening start and end temperatures), phase composition (X-ray phase analysis), and porosity were studied. Blast furnace smelting parameters were calculated using laboratory pellets with different basicities and degrees of metallization. Pellets were obtained from complex titanium-magnetite ores. The vanadium extraction of this ore into metal did not exceed 10 % during smelting of metallized pellets in an arc steelmaking furnace, but special techniques could raise this to 85 %. According to calculations from the Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (IMET UB RAS), vanadium extraction up to 80–90 % can be achieved by using high-base and partially metallized pellets. The influence of changes in the composition and metallurgical characteristics of titanomagnetite pellets with increasing basicity (especially relative to strength after reduction) should be taken into account.

1900 ◽  
Vol 50 (1296supp) ◽  
pp. 20771-20772
Author(s):  
C. C. Longridge

2007 ◽  
Vol 37 (10) ◽  
pp. 898-899 ◽  
Author(s):  
L. D. Nikitin ◽  
V. A. Dolinskii ◽  
S. A. Kudashkina ◽  
L. V. Portnov ◽  
S. F. Bugaev

2021 ◽  
pp. 4-10
Author(s):  
R. R. Dema ◽  
◽  
A. N. Shapovalov ◽  
S. N. Baskov ◽  
◽  
...  

The results of the analysis of production data on the operation of blast furnace No. 1 (useful volume 1007 m3) of Ural Steel JSC for the period from 2013 to 2018 are presented. During this period, pellets from the Mikhailovsky GOK were used with varying degrees of fluxing: pellets of natural basicity in the ratio of CaO/SiO2 equal to 0.08 ± 0.02 units. (2013-2015) and partially fluxed pellets with a basicity of 0.52 ± 0.05 units. (from 2016 to the present). It has been established that the effectiveness of the use of pellets of various basicities is determined by their behavior in the blast furnace and depends on the proportion of pellets in the iron ore part of the charge. The gas-dynamic conditions of the smelting worsen with an increase in the proportion of pellets in the charge, which is accompanied by an increase in the specific pressure drop and forces the flow rate to be adjusted. There is an optimal level of specific pressure drop (53–55 Pa per 1 m3 of blast per minute) for the operating conditions of blast furnace No. 1 of Ural Steel, which ensures the optimum combination of the melting characteristics. Deviation from the optimal level of pressure drop leads to an increase in coke rate and a decrease in the degree of CO use, which is associated with gas distribution disturbance. Due to the increase in high-temperature properties, the replacement of non-fluxed pellets with off-fluxed pellets improves the gas-dynamic conditions in the lower part of the mine (in the cohesive zone). This leads to a decrease in the total pressure drop and specific pressure drop at a constant flow rate of the blast, and is a reserve for melting intensification. To minimize coke rate and maintain the high-performance operation of blast furnaces of Ural Steel JSC, it is necessary to work on 40–45 % of fluxed or 20–25 % acid pellets in a charge. An increase in pellet consumption while maintaining the efficiency of blast-furnace smelting is possible only if their high-temperature properties are improved. The improvement of these properties is possible as a result of optimizing the basicity and increasing the MgO content, which affects the structure and properties of the silicate bond. This work is carried out within a framework of the government order (No. FZRU-2020-0011) of the Ministry of Science and Higher Education of the Russian Federation.


2010 ◽  
Vol 146-147 ◽  
pp. 475-480 ◽  
Author(s):  
Ran Liu ◽  
Xing Juan Wang ◽  
Yong Liang Gao ◽  
Qing Lu ◽  
Xiang Xin Xue

Using ludwigite as raw material, the phase transformation and mass loss rate of ludwigite in the process of oxidizing roasting are investigated by DTA, isothermal TG, scanning electron microscopy (SEM), X-ray diffraction (XRD) techniques. The results showed that magnetite is transformed into hematite, serpentine is decomposed into forsterite at lower temperature (T<700°C). The weight of ludwigite has a small loss below 600°C. The decomposed of szaibelyite dehydrated and formed into suanite about 700°Cis the main reason of causing ludwigite mass losses. By comparing the curves of ludwigite at different temperature from 700 to 900°C, the process of oxidizing roasting can be divided into three phases: characterized by a period of fast weight loss, and then followed by a mass gain. Finally, weight of sample is no longer change with prolongation of time. The final weight loss is 6.062%, 6.658% and 7.442% respectively for test temperature. Suanite can not be decomposed to form B2O3 and volatilized when the temperature of oxidizing roasting is below 1142 °C. It is found by XRD that paigeite and magnoferrite are the most stable composition without deterioration on oxidizing roasting. The experiment results can provide theoretical references for agglomeration and blast furnace smelting of ludwigite.


Sign in / Sign up

Export Citation Format

Share Document