Creep and Thermal Cycling of Continuous Fiber Reinforced Metal-Matrix Composites

1995 ◽  
Vol 104-107 ◽  
pp. 673-690 ◽  
Author(s):  
Pradip Dutta
1999 ◽  
Vol 122 (2) ◽  
pp. 203-208 ◽  
Author(s):  
Chuwei Zhou ◽  
Wei Yang ◽  
Daining Fang

Mechanical properties and damage evolution of short-fiber-reinforced metal matrix composites (MMC) are studied under a micromechanics model accounting for the history of cooling and thermal cycling. A cohesive interface is formulated in conjunction with the Gurson-Tvergaard matrix damage model. Attention is focused on the residual stresses and damages by the thermal mismatch. Substantial stress drop in the uniaxial tensile response is found for a computational cell that experienced a cooling process. The stress drop is caused by debonding along the fiber ends. Subsequent thermal cycling lowers the debonding stress and the debonding strain. Micromechanics analysis reveals three failure modes. When the thermal histories are ignored, the cell fails by matrix damage outside the fiber ends. With the incorporation of cooling, the cell fails by fiber end debonding and the subsequent transverse matrix damage. When thermal cycling is also included, the cell fails by jagged debonding around the fiber tops followed by necking instability of matrix ligaments. [S0094-4289(00)01202-0]


1995 ◽  
Vol 62 (2) ◽  
pp. 441-449 ◽  
Author(s):  
K. B. Milligan ◽  
V. K. Kinra

Recently, taking the second law of thermodynamics as a starting point, a theoretical framework for an exact calculation of the elastothermodynamic damping in metal-matrix composites has been presented by the authors (Kinra and Milligan, 1994; Milligan and Kinra, 1993). Using this work as a foundation, we solve two canonical boundary value problems concerning elastothermodynamic damping in continuous-fiber-reinforced metal-matrix composites: (1) a fiber in an infinite matrix, and (2) using the general methodology given by Bishop and Kinra (1993), a fiber in a finite matrix. In both cases the solutions were obtained for the following loading conditions: (1) uniform radial stress and (2) uniform axial strain.


2017 ◽  
Vol 54 (6) ◽  
pp. 060003
Author(s):  
石 川 Shi Chuan ◽  
雷剑波 Lei Jianbo ◽  
周圣丰 Zhou Shengfeng ◽  
郭津博 Guo Jinbo ◽  
王 威 Wang Wei

Sign in / Sign up

Export Citation Format

Share Document