Biomimetic Organic-Inorganic Nanocomposite Coatings for Titanium Implants. II. Biological "In Vitro" and "In Vivo" Characterization

2007 ◽  
Vol 330-332 ◽  
pp. 401-404 ◽  
Author(s):  
M. Dutour Sikirić ◽  
Rene Elkaim ◽  
S. Lamolle ◽  
H.J. Ronold ◽  
S.P. Lyngstadass ◽  
...  

Biological mineralization proceeds within an organic matrix and is induced and controlled by extracellular, highly acidic matrix macromolecules. Our group has recently prepared organic-inorganic nanocomposite coatings by a strategy that closely mimics these processes. The strategy involves depositing a matrix of polyelectrolyte multilayers (PE MLs), alternating with layers of amorphous calcium phosphate (ACP) particles, then "in situ" growing nanosized apatite crystals within that matrix [1, 2]. Here we describe the results of biological "in vitro" and "in vivo" testing of these materials.

2021 ◽  
Vol 52 ◽  
pp. 102206
Author(s):  
Alexandra Haase ◽  
Tim Kohrn ◽  
Veronika Fricke ◽  
Maria Elena Ricci Signorini ◽  
Merlin Witte ◽  
...  

2015 ◽  
Vol 5 (4) ◽  
pp. 457-466 ◽  
Author(s):  
Tianxing Gong ◽  
Zhiqin Wang ◽  
Yixi Zhang ◽  
Yubiao Zhang ◽  
Mingxiao Hou ◽  
...  

2009 ◽  
Vol 631-632 ◽  
pp. 211-216 ◽  
Author(s):  
Kyosuke Ueda ◽  
Takayuki Narushima ◽  
Takashi Goto ◽  
T. Katsube ◽  
Hironobu Nakagawa ◽  
...  

Calcium phosphate coating films were fabricated on Ti-6Al-4V plates and screw-type implants with a blast-treated surface using radiofrequency (RF) magnetron sputtering and were evaluated in vitro and in vivo. Amorphous calcium phosphate (ACP) and oxyapatite (OAp) films obtained in this study could cover the blast-treated substrate very efficiently, maintaining the surface roughness. For the in vitro evaluations of the calcium phosphate coating films, bonding strength and alkaline phosphatase (ALP) activity were examined. The bonding strength of the coating films to a blast-treated substrate exceeded 60 MPa, independent of film phases except for the film after post-heat-treatment in silica ampoule. When compared with an uncoated substrate, the increase in the ALP activity of osteoblastic SaOS-2 cells on a calcium phosphate coated substrate was confirmed by a cell culture test. The removal torque of screw-type Ti-6Al-4V implants with a blast-treated surface from the femur of Japanese white rabbit increased with the duration of implantation and it was statistically improved by coating an ACP film 2 weeks after implantation. The in vitro and in vivo studies suggested that the application of the sputtered ACP film as a coating on titanium implants was effective in improving their biocompatibility with bones.


2019 ◽  
Vol 10 (4) ◽  
pp. 54 ◽  
Author(s):  
Joseph Lazraq Bystrom ◽  
Michael Pujari-Palmer

Phosphoserine modified cements (PMC) exhibit unique properties, including strong adhesion to tissues and biomaterials. While TTCP-PMCs remodel into bone in vivo, little is known regarding the bioactivity and physiochemical changes that occur during resorption. In the present study, changes in the mechanical strength and composition were evaluated for 28 days, for three formulations of αTCP based PMCs. PMCs were significantly stronger than unmodified cement (38–49 MPa vs. 10 MPa). Inclusion of wollastonite in PMCs appeared to accelerate the conversion to hydroxyapatite, coincident with slight decrease in strength. In non-wollastonite PMCs the initial compressive strength did not change after 28 days in PBS (p > 0.99). Dissolution/degradation of PMC was evaluated in acidic (pH 2.7, pH 4.0), and supersaturated fluids (simulated body fluid (SBF)). PMCs exhibited comparable mass loss (<15%) after 14 days, regardless of pH and ionic concentration. Electron microscopy, infrared spectroscopy, and X-ray analysis revealed that significant amounts of brushite, octacalcium phosphate, and hydroxyapatite reprecipitated, following dissolution in acidic conditions (pH 2.7), while amorphous calcium phosphate formed in SBF. In conclusion, PMC surfaces remodel into metastable precursors to hydroxyapatite, in both acidic and neutral environments. By tuning the composition of PMCs, durable strength in fluids, and rapid transformation can be obtained.


2019 ◽  
Vol 374 ◽  
pp. 784-796 ◽  
Author(s):  
Lanyue Chen ◽  
Xudong Yan ◽  
Lili Tan ◽  
Bowen Zheng ◽  
Fenik Kaml Muhammed ◽  
...  

2011 ◽  
Vol 96A (4) ◽  
pp. 632-638 ◽  
Author(s):  
Xiaodong Ma ◽  
Shizu Oyamada ◽  
Tim Wu ◽  
Michael P. Robich ◽  
Hao Wu ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Dong-Hyun Kim ◽  
Tae-Wan Kim ◽  
Ju Dong Lee ◽  
Keun-Koo Shin ◽  
Jin Sup Jung ◽  
...  

Magnesium ion substituted biphasic calcium phosphate (Mg-BCP) bioceramic microscaffolds with spherical and porous morphology were successfully prepared usingin situcoprecipitation and rotary spray drying atomization process for application of tissue engineering combined with human adipose tissue-derived mesenchymal stem cells (hAT-MSCs). After 4 weeks of immersion in Hanks’ balanced salt solution (HBSS), Mg-BCP micro-scaffolds showed the enhanced biodegradation and bioactivity due to the substituted Mg2+ion present in the BCP structure. In this study, it was observed that hAT-MSCs have clearly attached on the surface of Mg-BCP micro-scaffolds. In addition, Mg-BCP micro-scaffolds exhibited the improved biocompatibility and osteoconductivity viain vitroandin vivobiological tests with hAT-MSCs. Therefore, these bioceramic micro-scaffolds had potential to be used as hAT-MSCs microcarriers for biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document