in vivo testing
Recently Published Documents


TOTAL DOCUMENTS

510
(FIVE YEARS 165)

H-INDEX

32
(FIVE YEARS 5)

Author(s):  
James W. Firman ◽  
Mark T. D. Cronin ◽  
Philip H. Rowe ◽  
Elizaveta Semenova ◽  
John E. Doe

AbstractThere exists consensus that the traditional means by which safety of chemicals is assessed—namely through reliance upon apical outcomes obtained following in vivo testing—is increasingly unfit for purpose. Whilst efforts in development of suitable alternatives continue, few have achieved levels of robustness required for regulatory acceptance. An array of “new approach methodologies” (NAM) for determining toxic effect, spanning in vitro and in silico spheres, have by now emerged. It has been suggested, intuitively, that combining data obtained from across these sources might serve to enhance overall confidence in derived judgment. This concept may be formalised in the “tiered assessment” approach, whereby evidence gathered through a sequential NAM testing strategy is exploited so to infer the properties of a compound of interest. Our intention has been to provide an illustration of how such a scheme might be developed and applied within a practical setting—adopting for this purpose the endpoint of rat acute oral lethality. Bayesian statistical inference is drawn upon to enable quantification of degree of confidence that a substance might ultimately belong to one of five LD50-associated toxicity categories. Informing this is evidence acquired both from existing in silico and in vitro resources, alongside a purposely-constructed random forest model and structural alert set. Results indicate that the combination of in silico methodologies provides moderately conservative estimations of hazard, conducive for application in safety assessment, and for which levels of certainty are defined. Accordingly, scope for potential extension of approach to further toxicological endpoints is demonstrated.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 117
Author(s):  
Marcel Hrubša ◽  
Raúl Alva ◽  
Mst Shamima Parvin ◽  
Kateřina Macáková ◽  
Jana Karlíčková ◽  
...  

Flavonoids are associated with positive cardiovascular effects. However, due to their low bioavailability, metabolites are likely responsible for these properties. Recently, one of these metabolites, 4-methylcatechol, was described to be a very potent antiplatelet compound. This study aimed to compare its activity with its 22 close derivatives both of natural or synthetic origin in order to elucidate a potential structure–antiplatelet activity relationship. Blood from human volunteers was induced to aggregate by arachidonic acid (AA), collagen or thrombin, and plasma coagulation was also studied. Potential toxicity was tested on human erythrocytes as well as on a cancer cell line. Our results indicated that 17 out of the 22 compounds were very active at a concentration of 40 μM and, importantly, seven of them had an IC50 on AA-triggered aggregation below 3 μM. The effects of the most active compounds were confirmed on collagen-triggered aggregation too. None of the tested compounds was toxic toward erythrocytes at 50 μM and four compounds partly inhibited proliferation of breast cancer cell line at 100 μM but not at 10 μM. Additionally, none of the compounds had a significant effect on blood coagulation or thrombin-triggered aggregation. This study hence reports four phenol derivatives (4-ethylcatechol, 4-fluorocatechol, 2-methoxy-4-ethylphenol and 3-methylcatechol) suitable for future in vivo testing.


2022 ◽  
Vol 12 (2) ◽  
pp. 560
Author(s):  
Chang-Lin Hu ◽  
Chien-Ju Li ◽  
I-Cheng Cheng ◽  
Peng-Zhi Sun ◽  
Brian Hsu ◽  
...  

Handheld ultrasound devices have been widely used for diagnostic applications. The use of the acoustic-field beamforming (AFB) method has been proposed for handheld ultrasound to reduce electricity consumption and avoid battery and unwanted heat issues. However, the image quality, such as the contrast ratio and contrast-to-noise-ratio, are poorer with this technique than with the conventional delay-and-sum method. To address the problems associated with the worse image quality in AFB imaging, in this paper we propose the use of an AFB-based generalized coherence factor (GCF) technique, in which the GCF weighting developed for adaptive beamforming is extended to AFB. Simulation data, experimental results, and in vivo testing verified the efficacy of our proposed AFB-based GCF technique.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 187
Author(s):  
Carla Daruich de Souza ◽  
Angelica Bueno Barbezan ◽  
Wilmmer Alexander Arcos Rosero ◽  
Sofia Nascimento dos Santos ◽  
Diego Vergaças de Sousa Carvalho ◽  
...  

New forms of cancer treatment, which are effective, have simple manufacturing processes, and easily transportable, are of the utmost necessity. In this work, a methodology for the synthesis of radioactive Gold-198 nanoparticles without the use of surfactants was described. The nuclear activated Gold-198 foils were transformed into H198AuCl4 by dissolution using aqua regia, following a set of steps in a specially designed leak-tight setup. Gold-198 nanoparticles were synthesized using a citrate reduction stabilized with PEG. In addition, TEM results for the non-radioactive product presented an average size of 11.0 nm. The DLS and results for the radioactive 198AuNPs presented an average size of 8.7 nm. Moreover, the DLS results for the PEG-198AuNPs presented a 32.6 nm average size. Cell line tests showed no cytotoxic effect in any period and the concentrations were evaluated. Furthermore, in vivo testing showed a high biological uptake in the tumor and a cancer growth arrest.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
Cameron Meyer-Mueller ◽  
Mark J. Osborn ◽  
Jakub Tolar ◽  
Christina Boull ◽  
Christen L. Ebens

Epidermolysis bullosa (EB) is a group of genetic blistering diseases characterized by mechanically fragile skin and mucocutaneous involvement. Historically, disease management has focused on supportive care. The development of new genetic, cellular, and recombinant protein therapies has shown promise, and this review summarizes a unique gene and cell therapy phenomenon termed revertant mosaicism (RM). RM is the spontaneous correction of a disease-causing mutation. It has been reported in most EB subtypes, some with relatively high frequency, and has been observed in both keratinocytes and fibroblasts. RM manifests as identifiable patches of unaffected, blister-resistant skin and can occur through a variety of molecular mechanisms, including true back mutation, intragenic crossover, mitotic gene conversion, and second-site mutation. RM cells represent a powerful autologous platform for therapy, and leveraging RM cells as a therapeutic substrate may avoid the inherent mutational risks of gene therapy/editing. However, further examination of the genomic integrity and long-term functionality of RM-derived cells, as well in vivo testing of systemic therapies with RM cells, is required to realize the full therapeutic promise of naturally occurring RM in EB.


2021 ◽  
pp. 2100389
Author(s):  
Tugba Dursun Usal ◽  
Metin Yesiltepe ◽  
Deniz Yucel ◽  
Yıldırım Sara ◽  
Vasif Hasirci
Keyword(s):  

2021 ◽  
Author(s):  
◽  
Hilary Mary Corkran

<p>Three aspects of the protecting-group-free (PGF) synthesis of small molecules have been described in this thesis. In the first part, the PGF azasugar synthesis methodology was applied to 2-deoxy-D-glucose with the intention of selectively forming the six-membered azasugar 5-epi-fagomine. Surprisingly, four products were formed in the key I2-mediated carbamate annulation step, with a pyrrolidine being the major product after optimisation. This was formed in 15% yield. A mechanism that explains the formation of the four carbamates was proposed, which was supported by an investigation into related halocyclisation reactions.  The next part of this thesis describes the development of a new PGF methodology for the synthesis of conduramines, another class of biologically interesting molecules. Conduramines are amino polyhydroxy cyclohexenes and some conduramines have glycosidase inhibitory activity. These molecules are also useful precursors to a variety of biologically useful molecules including aminocyclitols and azasugars. The key steps in the PGF synthesis of conduramines are a Vasella-Barbier amination, a reaction that forms new C-C and C-N bonds concomitantly, and a ring closing metathesis in the presence of free hydroxyl and amine groups. To this end, a 4-deoxy 3-conduramine was prepared in just four steps and in 27% yield.  Finally, the preparation of an amine library and its biological testing for the identification of a new anti-tuberculosis drug is described. Two short syntheses were used to prepare alkenylamines and amines from the corresponding sugar, with various lipophilic groups attached to the amine. A 20-member amine library was prepared, and the compounds were tested for anti-mycobacterial activity in a mycobacterial growth inhibition assay. The most active compounds were subjected to further biological testing to determine their general cytotoxic properties. Two amines, arabinohexadecylamine and arabinohexadecylmethylamine, were identified as having the best potential for use as anti-tuberculosis drugs, and have been sent to Colorado State University for subsequent in vivo testing in a mouse model of tuberculosis.</p>


2021 ◽  
Author(s):  
◽  
Hilary Mary Corkran

<p>Three aspects of the protecting-group-free (PGF) synthesis of small molecules have been described in this thesis. In the first part, the PGF azasugar synthesis methodology was applied to 2-deoxy-D-glucose with the intention of selectively forming the six-membered azasugar 5-epi-fagomine. Surprisingly, four products were formed in the key I2-mediated carbamate annulation step, with a pyrrolidine being the major product after optimisation. This was formed in 15% yield. A mechanism that explains the formation of the four carbamates was proposed, which was supported by an investigation into related halocyclisation reactions.  The next part of this thesis describes the development of a new PGF methodology for the synthesis of conduramines, another class of biologically interesting molecules. Conduramines are amino polyhydroxy cyclohexenes and some conduramines have glycosidase inhibitory activity. These molecules are also useful precursors to a variety of biologically useful molecules including aminocyclitols and azasugars. The key steps in the PGF synthesis of conduramines are a Vasella-Barbier amination, a reaction that forms new C-C and C-N bonds concomitantly, and a ring closing metathesis in the presence of free hydroxyl and amine groups. To this end, a 4-deoxy 3-conduramine was prepared in just four steps and in 27% yield.  Finally, the preparation of an amine library and its biological testing for the identification of a new anti-tuberculosis drug is described. Two short syntheses were used to prepare alkenylamines and amines from the corresponding sugar, with various lipophilic groups attached to the amine. A 20-member amine library was prepared, and the compounds were tested for anti-mycobacterial activity in a mycobacterial growth inhibition assay. The most active compounds were subjected to further biological testing to determine their general cytotoxic properties. Two amines, arabinohexadecylamine and arabinohexadecylmethylamine, were identified as having the best potential for use as anti-tuberculosis drugs, and have been sent to Colorado State University for subsequent in vivo testing in a mouse model of tuberculosis.</p>


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1378
Author(s):  
Dario Di Giuseppe ◽  
Valentina Scognamiglio ◽  
Daniele Malferrari ◽  
Luca Nodari ◽  
Luca Pasquali ◽  
...  

Today, despite considerable efforts undertaken by the scientific community, the mechanisms of carcinogenesis of mineral fibres remain poorly understood. A crucial role in disclosing the mechanisms of action of mineral fibres is played by in vitro and in vivo models. Such models require experimental design based on negative and positive controls. Commonly used positive controls are amosite and crocidolite UICC standards, while negative controls have not been identified so far. The extensive characterisation and assessment of toxicity/pathogenicity potential carried out in this work indicate that the commercial fibrous wollastonite NYAD G may be considered as a negative standard control for biological and biomedical tests involving mineral fibres. Preliminary in vitro tests suggest that wollastonite NYAD G is not genotoxic. This material is nearly pure and is characterized by very long (46.6 µm), thick (3.74 µm) and non-biodurable fibres with a low content of metals. According to the fibre potential toxicity index (FPTI) model, wollastonite NYAD G is an inert mineral fibre that is expected to exert a low biological response during in vitro/in vivo testing.


Sign in / Sign up

Export Citation Format

Share Document