Simulation and Experimental Analysis of Fatigue Crack Growth under Cyclic Loading

2011 ◽  
Vol 462-463 ◽  
pp. 501-505
Author(s):  
S.M. Beden ◽  
Shahrum Abdullah ◽  
Ahmad Kamal Ariffin ◽  
N.A. Al-Asady

The problem of crack growth is a major issue in the prediction and maintenance of engineering structural elements. Prediction of expected life of a structural element due to constant (static) and alternating loading (fatigue) is of major concern to the designers. Prediction of remaining life of the structural elements influences the decisions of maintenance engineers (checking intervals, corrections, and replacements).The fatigue crack growth rate, which determine the fatigue life of the components after crack initiation need to be experimentally and theoretically investigated. In this study, fatigue crack growth tests were conducted under constant amplitude loading at a stress ratio of 0.1, using three-point bend (TPB) specimens of ASTM A533 steel material. For the simulation part of this study, three fatigue crack growth models, i.e. the Paris, modified Forman and Austen were examined. None of the models has a fit for the fatigue crack growth rate data in a similar behaviour compared to others. The modified Forman model provided a closer fit than the Paris model with respect to the experimental results. However, the Austen model provided the best fit to the fatigue crack growth rate data as compared with the other two models. Therefore, this model is suggested for use in critical applications.

2018 ◽  
Vol 928 ◽  
pp. 221-228
Author(s):  
Chih Chung Ni

The study is focused on the comparisons among three stochastic fatigue crack growth models through evaluations of experimental data. The first model assumed that the coefficient and exponent parameters of Paris-Erdogan law are mutually dependent normal random variables. The second model assumed that the fatigue crack growth rate equals to the deterministic Paris-Erdogan law multiplied by a stationary log-normal random factor while the third model proposed by the author was assumed that the fatigue crack growth rate equals to a deterministic polynomial in terms of fatigue crack size multiplied by a stationary log-normal random factor. Compact-tension specimens cut from a 2024-T351 aluminum-alloy plate were used for fatigue crack growth experiments under constant loads performed on thirty specimens. The normal probability paper for the first model was investigated to show the validity of the normal random parameter, and the log-normal probability papers for the second and third models were also investigated to show the validity of log-normal assumption of the random factors. The investigations on the probability of crack exceedance and distribution of random time of the three models were also made, and the comparisons of the results for all models were made as well.


Sign in / Sign up

Export Citation Format

Share Document