Free Vibration Analysis of Symmetrically Laminated Fully Clamped Skew Plates Using Extended Kantorovich Method

2011 ◽  
Vol 471-472 ◽  
pp. 739-744 ◽  
Author(s):  
Ali Fallah ◽  
Mohammad Hossein Kargarnovin ◽  
Mohammad Mohammadi Aghdam

In this paper, free vibration analysis of thin symmetrically laminated skew plates with fully clamped edges is investigated. The governing differential equation for skew plate which is a fourth order partial differential equation (PDE) is obtained by transforming the differential equation in Cartesian coordinates into skew coordinates. Based on the multi-term extended Kantorovich method (MTEKM) an efficient and accurate approximate closed-form solution is presented for the governing PDE. Application of the MTEKM reduces the governing PDE to a dual set of ordinary differential equations. These sets of equations are then solved with infinite power series solution, in an iterative manner until convergence was achieved. Results of this study show the fast rate of convergence of the MTEKM. Usually two or three iterations are enough to obtain reasonably accurate results. The frequency parameters of laminated composite plates are obtained for different skew angles and lay-up configuration for different composites laminates skew plates. Comparisons have been made with the available results in the literature which show the accuracy and efficiency of the method.

2016 ◽  
Vol 20 (5) ◽  
pp. 617-638 ◽  
Author(s):  
MP Arunkumar ◽  
Jeyaraj Pitchaimani ◽  
KV Gangadharan

This paper presents the studies carried out on bending and free vibration behavior of truss core sandwich panel filled with foam typically used in aerospace applications. Equivalent stiffness properties for foam-filled truss core sandwich panel are derived by idealizing 3D foam-filled sandwich panel to an equivalent 2D orthotropic thick plate continuum. The accuracy of the derived elastic property is ensured by the numerical comparison of free vibration response of 3D and its equivalent 2D finite element model. The derived stiffness constants were used in closed form solution to evaluate the maximum deflection of the continuum. The results show that the free vibration and static behavior of the sandwich panel can be enhanced in due consideration to the space constraint by filling foam in the empty space of core. The results also reveal that triangular core foam-filled sandwich panel deflects less compared to other cores. From the free vibration analysis, effect of filling foam is effective in cellular and trapezoidal core.


Sign in / Sign up

Export Citation Format

Share Document