Damage Avoidance Self-Centering Steel Moment Resisting Frames (MRFs) Using Innovative Resilient Slip Friction Joints (RSFJs)

2018 ◽  
Vol 763 ◽  
pp. 726-734 ◽  
Author(s):  
Ashkan Hashemi ◽  
Pouyan Zarnani ◽  
Farhad Mohammadi Darani ◽  
Armin Valadbeigi ◽  
George Charles Clifton ◽  
...  

Higher seismic performance can be achieved by localizing the inelastic deformation in the connections (fuses) and minimizing the residual drift that are often a determining factor in whether a structure can be repaired or re-occupied after an earthquake. This paper introduces the self-centering damage avoidance steel Moment Resisting Frames (MRFs) using innovative Resilient Slip Friction Joints (RSFJs). The RSFJ provides self-centering and energy dissipation in one compact package requiring no post-event maintenance. In this concept, the beam is connected to the column through a pinned joint at the top, an RSFJ at the bottom and a slotted web plate for transferring the shear forces, when required. The RSFJ allows for gap opening in the connection upon loading and then re-centers the system when unloading. Furthermore, a secondary fuse within the RSFJ is considered to keep maintaining a ductile behavior in the system in case of an earthquake larger than the design earthquake. The conducted experimental tests confirmed the outcomes of this study.

2014 ◽  
Vol 8 (1) ◽  
pp. 289-299 ◽  
Author(s):  
Esra Mete Güneyisi ◽  
Mario D'Aniello ◽  
Raffaele Landolfo

In recent decades, several passive energy dissipation systems have been conceived in order to minimize the damage in structural and non-structural components of either new or existing buildings. In this study, the use of friction damped tension-compression diagonal braces for seismic upgrading of a steel moment resisting frames is investigated. To this aim, nonlinear time history analyses have been carried out on a set of representative frames with and without friction damped braces. In the nonlinear time history analyses, two sets of natural accelerograms compatible with seismic hazard levels of 10% and 2% probability of exceedance in 50 years have been considered. Under these records, the structural response has been comparatively investigated in terms of the maximum inter-storey drift ratio, maximum storey acceleration, residual drift ratio and displacement demand for the friction device. The results clearly highlighted that the application of friction damped braces allows reducing the damages to the main structural elements, thus significantly improving the seismic behaviour of the frame.


Structures ◽  
2021 ◽  
Vol 32 ◽  
pp. 1646-1664
Author(s):  
Elena Elettore ◽  
Annarosa Lettieri ◽  
Fabio Freddi ◽  
Massimo Latour ◽  
Gianvittorio Rizzano

2021 ◽  
Vol 244 ◽  
pp. 112751
Author(s):  
Carlos Molina Hutt ◽  
Shervin Zahedimazandarani ◽  
Nasser A. Marafi ◽  
Jeffrey W. Berman ◽  
Marc O. Eberhard

Sign in / Sign up

Export Citation Format

Share Document