base connections
Recently Published Documents





2022 ◽  
Vol 252 ◽  
pp. 113736
Yun Zhou ◽  
Jianbo Yang ◽  
Xianming Luo ◽  
Hyeon-Jong Hwang ◽  
Hui Chen ◽  

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 105-119
Jianrong Pan ◽  
Ruike Huang ◽  
Jing Xu ◽  
Peng Wang ◽  
Zhan Wang ◽  

2021 ◽  

The response of exposed column base connections for L-shaped column is investigated through finite element analysis (FEA) in this paper which is affected by complex interactions among different components. Three finite element models are constructed to simulate the response of these connections under axial and cyclic horizontal loading, which interrogate a range of variables including anchor rod strength, base plate size and thickness. The results of the simulations provide insights into internal stress distributions which have not been measured directly through experiments. The key findings indicate that thicker base plates tend to shift the stresses to the toe of the base plate, while thinner plates concentrate the stresses under the column flange. Base on the analytical results, a hysteretic model is proposed to describe the cyclic moment-rotation response of exposed column base connections. The core parameters used to define the backbone curve of the hysteretic model are calibrated through configurational details. The comparison between the simulation and the calculated values indicates that the hysteretic model is suitable to characterize the key aspects of the physical response, including pinching, recentering and flag-shaped hysteresis phenomenon. Limitations of the model are outlined.

D. Sahithi ◽  
Dr. J. Keziya Rani

In distributed database management systems, fragmenting base connections increases concurrency and hence system throughput for query processing. User queries use hybrid fragmentation methods focused on vector bindings, and deductive database implementations lack query-access-rule dependence. As a result, for hierarchical deductive information implementations, a hybrid fragmentation solution is used. The method considers the horizontal partition of base relations based on the bindings placed on user requests, then produces vertical fragments of the horizontally partitioned relations, and finally clusters rules based on attribute affinity and query and rule access frequency. The suggested fragmentation approach makes distributed deductive database structures easier to develop.

ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 1736-1746
Annarosa Lettieri ◽  
Elena Elettore ◽  
Fabio Freddi ◽  
Massimo Latour ◽  
Gianvittorio Rizzano

Sign in / Sign up

Export Citation Format

Share Document