degradation properties
Recently Published Documents


TOTAL DOCUMENTS

563
(FIVE YEARS 165)

H-INDEX

39
(FIVE YEARS 9)

2022 ◽  
Vol 25 ◽  
pp. 100564
Author(s):  
Heon Lee ◽  
Jaegu Park ◽  
Su Shiung Lam ◽  
Young-Kwon Park ◽  
Sang-Chai Kim ◽  
...  

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
M. Sathya ◽  
G. Selvan ◽  
K. Kasirajan ◽  
S. Usha ◽  
P. Baskaran ◽  
...  

2021 ◽  
Vol 22 (23) ◽  
pp. 13050
Author(s):  
Tamer M. Tamer ◽  
Mosa H. Alsehli ◽  
Ahmed M. Omer ◽  
Tarek H. Afifi ◽  
Maysa M. Sabet ◽  
...  

The predominant impediments to cutaneous wound regeneration are hemorrhage and bacterial infections that lead to extensive inflammation with lethal impact. We thus developed a series of composite sponges based on polyvinyl alcohol (PVA) inspired by marjoram essential oil and kaolin (PVA/marjoram/kaolin), adopting a freeze–thaw method to treat irregular wounds by thwarting lethal bleeding and microbial infections. Microstructure analyses manifested three-dimensional interconnected porous structures for PVA/marjoram/kaolin. Additionally, upon increasing marjoram and kaolin concentrations, the pore diameters of the sponges significantly increased, recording a maximum of 34 ± 5.8 µm for PVA-M0.5-K0.1. Moreover, the porosity and degradation properties of PVA/marjoram/kaolin sponges were markedly enhanced compared with the PVA sponge with high swelling capacity. Furthermore, the PVA/marjoram/kaolin sponges exerted exceptional antibacterial performance against Escherichia coli and Bacillus cereus, along with remarkable antioxidant properties. Moreover, PVA/marjoram/kaolin sponges demonstrated significant thrombogenicity, developing high thrombus mass and hemocompatibility, in addition to their remarkable safety toward fibroblast cells. Notably, this is the first study to our knowledge investigating the effectiveness of marjoram in a polymeric carrier for prospective functioning as a wound dressing. Collectively, the findings suggest the prospective usage of the PVA-M0.5-K0.1 sponge in wound healing for hemorrhage and bacterial infection control.


2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Xiaolei Ma ◽  
Duomo Duan ◽  
Xunliang Wang ◽  
Junrui Cao ◽  
Jinquan Qiu ◽  
...  

Alkali-surfactant-polymer flooding technology is widely employed to extract crude oil to enhance its production. The bacterial strain Rhodococcus erythropolis SY095 has shown high degradation activity of alkane of crude oil. In the past, many treatment strategies have been implemented to reduce oil concentration in wastewater. Previous studies mainly focused on the extracellular products of Erythrococcus rather than its degradation properties. In the current study, we designed an immobilization method to modify the surface of R. erythropolis SY095 with functional Fe 3 O 4 nanoparticles (NPs) for biodegradation of crude oil and separation of the immobilized bacteria after degradation. We characterize the synthesized NPs through various methods, including scanning electron microscope energy-dispersive spectrometer, Fourier transform infrared spectroscopy, X-ray diffraction (XRD) and a vibrating sample magnetometer. We found that the size of the synthesized NPs was approximately 100 nm. Our results showed that R. erythropolis SY095 was successfully coated with functional magnetic NPs (MNPs) that could be easily separated from the solution via the application of an external magnetic field. The coated cells had a high tolerance for heavy metals. Our findings demonstrated that the immobilization of MNPs to bacterial surfaces is a promising approach for the degradation of crude oil.


Author(s):  
Jakub Wlodarczyk ◽  
Mateusz Stojko ◽  
Monika Musial-Kulik ◽  
Paulina Karpeta-Jarzabek ◽  
Malgorzata Pastusiak ◽  
...  

Author(s):  
Huafang Li ◽  
Jinyan Huang ◽  
Peng Zhang ◽  
Qi Zhang

AbstractAs a potential biodegradable implant material, zinc (Zn) alloys have attracted increasing attention due to their good biocompatibility and moderate degradation rate. Zn and its alloys are expected to become candidate materials for medical devices. The metals implanted in the human body will inevitably undergo friction in the human body before it is completely degraded. Friction and wear are essential factors which may cause medical devices’ service failure. However, there are still few studies on the friction and wear properties of biodegradable Zn-based alloys in the human body, and most studies just focus on the mechanical properties, degradation properties and biocompatibility of the alloys. Thus, it is crucial to study the friction and wear properties of Zn and its alloys. In the present work, we investigated the tribological properties of biodegradable pure Zn and Zn-X (Li, Cu, Ge) alloys. Our study found that under simulated body fluid and dry friction conditions, the addition of alloying elements Li and Cu can improve the friction properties of Zn. Among the four metals, Zn-0.5Li alloy has the lowest friction coefficient and the best wear resistance. Hank’s solution has lubricating and corrosive effects. That is to say, when the alloy is rubbed in Hank’s solution, it can not only be protected by the lubrication of the solution, but also tribocorrosion will occur as well.


Author(s):  
Linsheng Zeng ◽  
Zichun He ◽  
Yongping Luo ◽  
Jitao Xu ◽  
Jiansheng Chen ◽  
...  

Abstract In this work, highly ordered titanium dioxide nanotube arrays (TNTs) were first prepared by anodic oxidation method. Then, g-C3N4/TNTs heterojunctions were prepared by ultrasonically loading graphitic carbon nitride (g-C3N4) onto the TNTs. The morphology and crystal structure of TNTs and g-C3N4/TNTs were characterized by SEM and XRD. The photoelectrocatalytic (PEC) degradation of methyl orange (MO) by TNTs and g-C3N4/TNTs was studied in a PEC degradation system. The photocatalytic (PC), electrocatalytic (EC), and PEC degradation properties were compared, and the effect of pollutant concentration on the degradation performance of the catalysts was analyzed. According to the experimental results, the degradation rate of MO with TNTs only reaches 65.1% after 120 min, while the degradation rate of MO with g-C3N4/TNTs reaches 84.6% in the same time. Due to the synergistic effect of light and electricity, the PEC degradation efficiency of the two catalysts is greater than the sum of PC and EC degradation, proving that g-C3N4/TNTs heterojunctions provide excellent PEC performance for the degradation of MO.


Sign in / Sign up

Export Citation Format

Share Document