ductile behavior
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 88)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Nicola Longarini ◽  
Pietro Giuseppe Crespi ◽  
Marco Zucca

Abstract Recent Italian earthquakes have shown the seismic vulnerability of many typical historical masonry churches characterized by one nave and wooden roofs. Under transverse earthquake the nave transverse response of this kind of churches can be influenced by the geometrical and material features. To increase the seismic performance, strengthening interventions aimed to pursue the global box-behavior by the realization of dissipative roof-structure represent a valid strategy especially for avoiding out-of-plane mechanisms. In this way, the roof structure must be able to represent a tool for the damped rocking of the perimeter walls. Cross-laminated timber panels (CLT) have been recently adopted as roof-diaphragm having shown valid ductile behavior in experimental tests, satisfying the conservative restoration criteria at the same time. In this paper, after a description of the numerical approach for the damped rocking mechanism for one nave configuration church, the effectiveness of different CLT based roof-diaphragms in the nave transverse response is investigated for four historical churches. The seismic responses are performed by comparative dynamic nonlinear analyses and the results are shown in terms of displacements and shear actions transferred to the façade. The influence of the geometrical features of the churches on the nave transversal response is deepened by sensitivity analyses with the aim to predict the displacements and shear variations under the same earthquake excitation.


2021 ◽  
Author(s):  
Xian-Hao Zhao ◽  
Tian-Yu Tang ◽  
Quan Xie ◽  
Li-Min Lu ◽  
Yan-Lin Tang

Abstract The current work has investigated the mechanical, electronic and optical properties of Pb-free vacancy-ordered double perovskites K2PdCl6 and K2PdBr6 by using first-principles calculations based on the framework of density functional theory (DFT). The calculated lattice constants of K2PdCl6 and K2PdBr6 are close to the experiments. It is determined by calculating the Goldschmidt’s tolerance factors and elastic constants of K2PdCl6 and K2PdBr6 that they can be stabilized into 3D cubic crystal structures. The calculated Poisson and Pugh’s ratios indicate that K2PdCl6 is a brittle material, while K2PdBr6 exhibits ductile behavior. Both K2PdCl6 and K2PdBr6 are indirect band gap semiconductors, which show suitable band gaps of 2.151 eV and 1.368 eV for optoelectronic devices, respectively. In addition, the optical properties of K2PdCl6 and K2PdBr6 in the photon energy range of 0−6 eV further reveal the application potential of these compounds in single-junction and tandem solar cells as well as other optoelectronic devices.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Malika Belhocine ◽  
Youcef Bouafia ◽  
Mohand Said Kachi ◽  
Karim Benyahi

Purpose The calculation and design of the structures are carried out with the aim of obtaining a sufficiently ductile behavior to allow the structure to undergo displacements, without risk of sudden breaks or loss of stability. The purpose of this study is to develop and validate a computer program (Thin beam2), allowing the modeling and simulation of the nonlinear behavior of reinforced concrete elements, on the other part, it is estimating the local and global ductility of the sections or elements constituting these structures. Design/methodology/approach The authors present two nonlinear analysis methods to carry out a parametric study of the factors influencing the local and global ductility of reinforced concrete structures. The first consists in evaluating the nonlinear behavior at the level of the cross-section of the reinforced concrete elements used in the elaborate Sectenol 1 program, it allows us to have the local ductility. The second, allows us to evaluate the nonlinear behavior of the element used in the modified thin beam 2 program, it allows us to estimate the overall ductility of the element. Findings The validation results of the Thin beam2 program are very satisfactory, by conferring the analytic and experimental results obtained by various researchers and the parametric study shows that each factor such as the compressive strength of the concrete has a favorable effect on ductility. Conversely, the normal compression force and the high resistance of tensioned reinforcements adversely affect ductility. Originality/value The reliability of the two programs lies in obtaining the local and global ductility of reinforced concrete structures because the calculation and design of the structures are carried out with the aim of obtaining ductile behavior without risk of breakage and instability.


Author(s):  
Remmal Almahdi ◽  
Stephane Marie

Abstract Experiments have shown that ductile failure occurs sooner under cyclic loading conditions than under monotone ones. This reduction of ductility probably arises from an effect called "ratcheting of the porosity" that consists of a continued increase of the mean porosity during each cycle with the number of cycles. Improved micromechanical simulations confirmed this interpretation. The same work also contained a proof that Gurson's classical model for porous ductile materials does not predict any ratcheting of the porosity. In a recent work [6], the authors proposed a Gurson-type "layer model" better fit than Gurson's original one for the description of the ductile behavior under cyclic loading conditions, using the theory of sequential limit analysis. A very good agreement was obtained between the model predictions and the results of the micromechanical simulations for a rigid-hardenable material. However, the ratcheting of the porosity is a consequence of both hardening and elasticity, and sequential limit analysis [14, 15] is strictly applicable in the absence of elasticity. In this work, a proposal is made to take into account elasticity in the layer model through the definition of a new objective stress rate leading to an accurate expression of the porosity rate accounting for both elasticity and plasticity. This proposal is assessed through comparison of its predictions with the results of some new micromechanical simulations performed for matrices exhibiting both elasticity and all types of hardening. Finally, a comparison of the predictions regarding finite element modeling of pipes loaded cyclically is proposed.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7186
Author(s):  
Agha Syed Muhammad Gillani ◽  
Seung-Geon Lee ◽  
Soo-Hyung Lee ◽  
Hyerin Lee ◽  
Kee-Jeung Hong

Twelve full-scale reinforced concrete beams with two tension lap splices were constructed and tested under a four-point loading test. Half of these beams had shorter lap splices than that recommended by American Concrete Institute Building Code ACI 318-19; they failed by bond loss between steel and concrete at the lap splice region before rebar yielding. The other half of the beams were designed with a lap splice length slightly exceeding that recommended by ACI 318-19; they failed by rebar yielding and exhibited a ductile behavior. Several strain gauges were attached to the longitudinal bars in the lap splice region to study the local behavior of deformed bars during loading. The strain in a rebar was maximum at the loaded end of the lap splice and progressively decreased toward the unloaded end because the rebar at this end could not sustain any load. Stress flow discontinuity occurred at the loaded end and caused stress concentration. The effect of this concentration was investigated based on test results. The comparison of bond strengths calculated by existing equations and those of tested specimens indicated that the results agreed well.


Author(s):  
Jacinto Ulloa ◽  
Jef Wambacq ◽  
Roberto Alessi ◽  
Esteban Samaniego ◽  
Geert Degrande ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1685
Author(s):  
Vladimir Dunić ◽  
Jelena Živković ◽  
Vladimir Milovanović ◽  
Ana Pavlović ◽  
Andreja Radovanović ◽  
...  

The aluminum alloys (AA) are among the most utilized materials in engineering structures, which induces the need for careful investigation, testing, and possibilities for accurate simulation of the structure’s response. AA 5083-H111 specimens were used to investigate the possibility of employing a Phase-Field Damage Model (PFDM) for the simulation of AA structures’ behavior. The specimens were mechanically tested by uniaxial tensile loading tests. Based on the obtained results, the PFDM was employed with a von Mises plasticity model, implemented in the Finite Element Method software. The plasticity model was extended by modification of the hardening function defined in two-intervals: a linear hardening and a Simo-type hardening. An excellent superposition of the simulation and experimental force-displacement response was recorded. These findings suggest that the AA structures’ response can be successfully simulated in the elastic-plastic domain, as well as its failure by damage being controlled.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Alireza Kianmehr

Simple bracing frames can be divided into two types in terms of concentric or eccentric. Concentric bracing frames are frames that intersect with other structural members at one point in the structure along the bracing members. Otherwise, the braced frame will be eccentric. It is said empirically that due to this type of shaping, eccentric bracing frames exhibit more ductile behavior and concentric bracing frames exhibit more stiff behavior. This behavioral difference caused this study to be numerically computing for five frames, including unique concentric and eccentric bracing frames of 5 and 10 stories and an ordinary 5-story concentric bracing frame. Their tensions and drift ratios should be acceptable for the use of residential buildings. Using the primary two steps of the new PEER probabilistic framework, namely, probabilistic seismic hazard analysis and structural analysis, which leads to the drawing of fragility curves, the probability of collapse is obtained to compare the safety capability of these frames according to their different characteristics against earthquakes. The results show that increasing the ductility or increasing the number of floors or the height of these systems can reduce collapse. Also, according to the results of the probability of collapse obtained in frames with 5-story concentric bracing frames, it can be said that some of the current regulations, which work based on previous approaches of analysis, can lead to unsafe structures with a high probability of collapse.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3553
Author(s):  
Mohsen Bahrami ◽  
Juana Abenojar ◽  
Miguel Angel Martínez

Chemically speaking, polyamide 11 (PA11) and polyamide 12 (PA12) have a similar backbone, differing only in one carbon. From an origin point of view, PA11 is considered a bioplastic polyamide composed from renewable resources, compared to oil-based PA12. Each of them has a number of advantages over the other, which makes their selection a challenging issue. Depending on the target application, diverse assessments and comparisons are needed to fulfill this mission. The current study addresses this research gap to characterize and compare PA11 and PA12 manufactured by the hot press technique in terms of their mechanical, thermal and durability properties for the first time, demonstrating their potential for future works as matrices in composite materials. In this regard, different characterization techniques are applied to the hot-pressed polymer sheets, including X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The mechanical performance of the PA11 and PA12 sheets is compared based on tensile tests and shore hardness measurement. The durability behavior of these two polyamides is evaluated in water and relative humidity conditions at different aging times. The experimental results show the ductile behavior of PA12 with respect to the quasi-brittle PA11. Both have a relatively small water and moisture gain: 1.5 wt% and 0.8 wt%, respectively. The higher crystallinity of PA12 (2.1 times more than PA11) with γ-phase is one of the leading parameters to achieve better mechanical and durability properties. The FTIR spectra displayed slight acid hydrolysis. Accordingly, absorbed water or moisture does not cause plasticization; thus, neither hardness nor dimension changes.


Sign in / Sign up

Export Citation Format

Share Document