Grain Boundary Migration of Tilt Σ11 and Σ27 Boundaries in Pure Aluminum

2004 ◽  
Vol 467-470 ◽  
pp. 835-842 ◽  
Author(s):  
Fuyuki Yoshida ◽  
Masato Uehara ◽  
Kenichi Ikeda ◽  
Hideharu Nakashima ◽  
Hiroshi Abe

Migrations of <110> tilt S 11 and S 27 boundaries in 99.99% purity aluminum have been investigated by Sun and Bauer technique as a function of temperature. In the S 11 tilt boundary, the activation energy for grain boundary migration is about 1/2 of the energy for Al-atom bulk-diffusion, indicating that the boundary motion may be governed by the grain boundary diffusion. While in the S 27 tilt boundary, the activation energy for grain boundary migration is about 125kJ/mol, which agrees with the energy for Al-atom bulk-diffusion. Study of boundary structure observation by high resolution electron microscopy revealed that the grain boundary structure of S 27 tilt boundary was consisted of edge dislocation array in which a space between dislocations was very short. It is considered that climb motion of the dislocations controlled to the motion of tilt boundaries consisted of edge dislocation array. From these results, it is concluded that the boundary motion of S 27 tilt boundary may be governed by climb motion of their dislocations controlled by Al-atom bulk-diffusion.

1996 ◽  
Vol 207-209 ◽  
pp. 493-496
Author(s):  
A. Katsman ◽  
Leonid Klinger ◽  
L. Levin ◽  
Eugen Rabkin ◽  
W. Gust

2007 ◽  
Vol 550 ◽  
pp. 387-392
Author(s):  
Pavel Lejček

Anisotropy of grain boundary motion in a Fe–6at.%Si alloy is represented by a spectrum of values of the activation enthalpy of migration and the pre-exponential factor, depending on the orientation of individual grain boundaries. The general plot of these values exhibits a pronounced linear interdependence called the compensation effect. It is shown that changes of these values, caused by changes of intensive variables, are thermodynamically consistent.


Electron microscope observations on some polycrystalline metals suggest that after small to moderate deformation, recrystallization occurs by the migration of the original grain boundaries. A theory based on this mechanism can account for the known form of the recrystallization kinetics without necessarily introducing any anisotropy of grain boundary mobility. For this mechanism the so-called recrystallization activation energy is identical to the activation energy for grain boundary migration.


1988 ◽  
Vol 143 ◽  
Author(s):  
C. L. Bauer ◽  
J. Gastaldi ◽  
C. Jourdan ◽  
G. Grange

AbstractGrain boundary migration has been investigated in prestrained monocrystalline specimens of aluminum in situ, continuously and at temperatures ranging from 415 to 610°C by synchrotron (polychromatic) x-ray topography (SXRT). In general, new (recrystallized) grains nucleate at prepositioned surface indentations and expand into the prestrained matrix, revealing complex evolution of crystallographic facets and occasional generation of (screw) dislocations in the wake of the moving boundaries. Analysis of corresponding migration rates for several faceted grain boundaries yields activation energies ranging from 56 to 125 kCal/mole, depending on grain boundary character. it is concluded that grain boundary mobility is a sensitive function of grain boundary inclination, resulting in ultimate survival of low-mobility (faceted) inclinations as a natural consequence of growth selection. Advantages and disadvantages associated with measurement of grain boundary migration by SXRT are enumerated and corresponding results are interpreted in terms of fundamental relationships between grain boundary structure and corresponding migration kinetics.


1991 ◽  
Vol 229 ◽  
Author(s):  
A. H. King

AbstractWe present a review of systematic studies of diffusion induced grain boundary migration (DIGM). The results are compared with structural models for the grain boundaries in order to assess the effects of structure upon DIGM. The nucleation of DIGM is also assessed in the light of grain boundary structure and it is demonstrated that changes of grain boundary solute concentration can induce large enough energy changes to drive novel grain boundary dissociation reactions.


Sign in / Sign up

Export Citation Format

Share Document