Micro Fabrication Design of a Planar Methanol Sensor

2006 ◽  
Vol 505-507 ◽  
pp. 1069-1074
Author(s):  
Shu Hao Liang ◽  
Chuen Horng Tsai ◽  
Chaug Liang Hsu

This study explains a design of the microfabricated planar methanol sensor and conducts a series of methods to achieve a real device. By utilizing the microfabrication technology, it is possible to develop the miniature planar methanol sensor to integrate with direct methanol fuel cells (DMFC). The electrochemically reactive area can be adjusted effectively to obtain adequate strength of the methanol oxidation current. The innovation of the methanol sensor design is on a matrix detecting area with the in-line monitoring functions. Each detecting holes in matrix has been connected together by a serpentine channel to conduct electrochemical reaction at the surface of electrodes. In front side of wafer, the interdigitate electrode design provides a flexible adjustment in the reactive area for modulating the strength of methanol oxidation current. A compatible fabrication of methanol sensor and DMFC has also been proposed in this work. The serpentine channel and detecting holes of methanol sensor are anticipated to be made in opposite side of DMFC fuel channels. Also, the through holes have to be formed by the combination of front-side and backside Deep RIE etching. Both of them require a precise double-side alignment. At the end, a simple planar methanol sensor has been made for verifying electrochemical characteristics and the integration solution with micro DMFC has been discussed to benefit the micro DMFC system development.

Nanoscale ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 4719-4728 ◽  
Author(s):  
Yunshan Zheng ◽  
Yan Zhai ◽  
Maomao Tu ◽  
Xinhua Huang ◽  
Mingcong Shu ◽  
...  

The design and fabrication of economically viable anode catalysts for the methanol oxidation reaction (MOR) have been challenging issues in direct methanol fuel cells (DMFCs) over the decades.


2000 ◽  
Vol 6 (S2) ◽  
pp. 24-25
Author(s):  
R.M. Stroud ◽  
J.W. Long ◽  
K.E. Swider ◽  
D.R. Rolison

Direct methanol fuel cells (DMFCs) offer a simpler, safer technology for point-of-use power sources compared to other hydrogen fuel cells, by avoiding the need to store hydrogen fuel or to carry out the reformation of hydrocarbons. The direct methanol oxidation electrocatalyst of choice is a nanoscale black consisting of a 50:50 atom % mixture of Pt and Ru. It has recently become known that these presumed bimetallic alloys in fact contain an array of metal, oxide and hydrous phases, which are easily misidentified in routine x-ray diffraction measurements due to particle size-broadening and poor crystallinity. By combining transmission electron microscopy, electrochemistry and thermogravimetric studies, we demonstrate here that the route to improved catalytic activity is not by phase purification of the bimetallic alloys, but instead phase engineering of hydrous ruthenium oxide and Pt mixtures.


2016 ◽  
Vol 4 (47) ◽  
pp. 18607-18613 ◽  
Author(s):  
Jinfa Chang ◽  
Ligang Feng ◽  
Kun Jiang ◽  
Huaiguo Xue ◽  
Wen-Bin Cai ◽  
...  

A novel Pt–CoP/C electrocatalyst was developed for direct methanol fuel cells. This catalyst showed superior power density to commercial Pt/C and PtRu/C catalysts. In situ ATR-SEIRAS technology revealed that the presence of CoP in the Pt-based catalyst can promote the methanol oxidation to final CO2 products.


2010 ◽  
Vol 27 (3) ◽  
pp. 802-806 ◽  
Author(s):  
Dae Kyu Kang ◽  
Chang Soo Noh ◽  
Sang Tae Park ◽  
Jung Min Sohn ◽  
Seung Kon Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document