serpentine channel
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 36)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 327 ◽  
pp. 279-286
Author(s):  
Nai Yong Li ◽  
Wei Min Mao ◽  
Xiao Xin Geng ◽  
Peng Yu Yan

Semi-solid 6061 aluminum alloy slurry was prepared by a graphite serpentine channel and its rheo-diecasting experiment was carried out on the slurry. The influence of pouring temperature on the microstructure evolution and mechanical properties of the rheo-diecasting were investigated. The microstructure and fracture mechanism of traditional die cast tensile specimens and rheo-diecast tensile specimens were compared and investigated. The results indicate that the microstructure of rheo-diecast tensile specimens is composed of spherical primary α-Al grains and fine secondary solidified α2-Al grains. When the pouring temperature increased from 660 °C to 720 °C, the average equivalent grain diameter of primary α-Al grains increased from 42 μm to 58 μm, and the shape factor decreased from 0.82 to 0.73. As the pouring temperature increases, the as-cast tensile strength and elongation of tensile specimens both increase first and then decrease. When the pouring temperature was 690 °C, the best mechanical properties were obtained, with as-cast tensile strength of 142.93 MPa and as-cast elongation of 4.86%. The fracture mechanism of traditional die casting is mainly ductile fracture, and the fracture mechanism of rheo-diecasting is a mixed fracture of intergranular fracture and ductile fracture.


2022 ◽  
Vol 327 ◽  
pp. 255-262
Author(s):  
Nai Yong Li ◽  
Wei Min Mao ◽  
Xiao Xin Geng ◽  
Peng Yu Yan

The semi-solid slurry of 6061 aluminum alloy was prepared by the serpentine channel pouring process. The influence of graphite serpentine channel and copper serpentine channel on the slurry was comparative analyzed. The effect of pouring temperature on the slurry microstructure was also investigated. The results indicate that both copper and graphite serpentine channel can be used to prepare semi-solid slurry with spherical primary grains. Compared with a permanent casting, the microstructure of the semi-solid slurry was significantly improved and refined. With the increase of pouring temperature, the average equivalent grain diameter of the primary phase grains in the semi-solid slurry increases gradually, but the shape factor decreases gradually. When the pouring temperature increased from 675 °C to 690 °C, a high quality semi-solid slurry can be obtained. Comparing the two kinds of serpentine channel, it is found that the copper serpentine channel can make the primary grains finer, and the average equivalent grain size was 63 μm. However, the solidified shell near the inner graphite serpentine channel surface was thinner than that of the copper serpentine channel. In conclusion, the graphite serpentine channel is more suitable for preparing semi-solid 6061 aluminum alloy slurry.


2021 ◽  
pp. 1-85
Author(s):  
Shinjan Ghosh ◽  
Erik Fernandez ◽  
Jayanta Kapat

Abstract Topology optimization uses a variable permeability approach to manipulate flow geometries. Such a method has been employed in the current work to modify the geometric configuration of internal cooling ducts by manipulating the distribution of material blockage. A modified version of the OpenFOAM solver AdjointshapeoptimizationFOAM has been used to optimize the flow path of a serpentine channel and high aspect ratio rectangular ducts, with increase in heat transfer and reduction in pressure drop as the objective functions. These duct shapes are typically used as internal cooling channels in gas turbine blades for sustaining the blade material at high inlet temperatures. The serpentine channel shape was initially topologically optimized, the fluid path from which was post-processed and re-simulated in STAR-CCM+. The end result had an improvement in thermal performance efficiency by 24%. Separation regions were found to be reduced when compared to the original baseline. The second test geometry was a high aspect ratio rectangular duct. Weight factors were assigned to the objective functions in this multi-objective approach, which were varied to obtain a unique shape for each such combination. The addition of mass penalization to the existing objective function resulted in a complex lattice like structure, which was a different outcome in geometry and shape when compared to the case without any additional penalization. The thermal performance efficiency of this shape was found to be higher by at-least 18% when compared to the CFD results of a few other turbulator shapes from literature.


2021 ◽  
Vol 134 ◽  
pp. 106013
Author(s):  
Muhammad Saddique Akbar Khan ◽  
Hui Liao ◽  
Guo Yu ◽  
Imran Iqbal ◽  
Menglai Lei ◽  
...  

Author(s):  
Oum El Kheir Hadj Rahmoun ◽  
Noureddine Tayebi ◽  
Mohamed Saighi

Abstract In Lab-On-Chip (LOC) applications, micromixing is the most important step to obtain fast analytical response in many biochemical and biological detections. Design and realization of smaller and shorter mixers with higher efficiency has become a necessity more than a recommendation. In this work, a numerical optimization of a passive mixer with a serpentine-shaped channel is proposed. By considering a laminar flow regime, the continuity and momentum equations, along with the advection-diffusion equation, are solved to evaluate the mixing performance. The optimization of the slanted grooves micromixer with a serpentine channel is achieved using computational fluid dynamics (CFD) and response surface methodology (RSM) based on Box-Behnken design. This method is used to find a second-order polynomial regression model and to obtain the optimal groove design. The considered objective function is the mixing index, while the four design variables are: the number of grooves per half cycle (N), the groove angle (θ), the groove depth to channel height ratio (d/h) and the ratio of groove width to channel width (Wd/W). The optimization results indicate that the highest values of each selected interval of the groove depth to channel height ratio (d/h) and the angle between the radius and the groove (θ), on the other hand, the ratio of groove width to channel width (Wd/W) of about 0.45 are desirable to promote faster mixing. The Flow behaviour in optimized “slanted grooves mixer (SGM) with serpentine channel was tested for low Reynolds number Re ranging between 0.3 and 5, and the results have shown that in the range of Re from 0.3 to 0.7 the mixing index is greater than 85%, for large range of Re from 1 to 4.5, the mixing index reaches the value of 93% in the first cycle of the channel and it approaches 100% for channel length of 1.25 mm from the inlet of the channel. Thus the most important result of this work shows that higher efficiency is obtained for short distance and the required pressure drops decreases. This micromixer can be selected as a good candidate in applications that require a high degree of mixing with relatively small length mixing as polymerase chain reaction (PCR) in the analysis and extraction of DNA.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhiqi Zhao ◽  
Lei Luo ◽  
Dandan Qiu ◽  
Songtao Wang ◽  
Zhongqi Wang ◽  
...  

Purpose This study aims to explore the 3 D separated flow fields and heat transfer characteristics at the end wall of a serpentine channel with various turn clearances using topological analysis and critical points principles of three-dimensional vortex flow. Design/methodology/approach This aims to explore the 3 D separated flow fields and heat transfer characteristics at the end wall of a serpentine channel with various turn clearances using topological analysis as well as critical points principles of three-dimensional vortex flow. Findings The endwall heat transfer in the narrow spacing passage is significantly stronger than that in a wide spacing channel. As the gap clearance is kept at 0.87 times of the hydraulic diameter, the endwall heat transfer and thermal performance can be accordingly enhanced with low pressure drops, which is because a relatively strong concentrated impingement flow for the medium gap clearance helps to restrain the downstream fluid flow and enhance the shear effect of the secondary flow. Practical implications The numerical results can be applied in designing sharp turn of serpentine channel in heat exchangers, heat sinks, piping system, solar receiver and gas turbine blades. Originality/value The evolution mechanism of the vortices in the turning region under different gap clearance was analyzed, and thermal enhancement characteristics were predicted innovatively using topological analysis method.


Author(s):  
Surajeet Mohanty ◽  
Akshaykumar N. Desai ◽  
Suneet Singh ◽  
Venkatasailanathan Ramadesigan ◽  
Shaneeth M

Sign in / Sign up

Export Citation Format

Share Document