pulse electrodeposition
Recently Published Documents


TOTAL DOCUMENTS

372
(FIVE YEARS 87)

H-INDEX

38
(FIVE YEARS 6)

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6781
Author(s):  
Pei Feng ◽  
Yuhua Shi ◽  
Peng Shang ◽  
Hanjun Wei ◽  
Tongtong Peng ◽  
...  

The internal stress difference between soft-ductile aluminum alloy substrate and hard-brittle Ni–W alloy coating will cause stress concentration, thus leading to the problem of poor bonding force. Herein, this work prepared the Ni–W graded coating on aluminum alloy matrix by the pulse electrodeposition method in order to solve the mechanical mismatch problem between substrate and coatings. More importantly, a backward propagation (BP) neural network was applied to efficiently optimize the pulse electrodeposition process of Ni–W graded coating. The SEM, EDS, XRD, Vickers hardness tester and Weighing scales are used to analyze the micromorphology, chemical element, phase composition, and micro hardness as well as oxidation weight increase, respectively. The results show that the optimal process conditions with BP neural network are as follows: the bath temperature is 30 °C, current density is 15 mA/cm2 and duty cycle is 0.3. The predicted value of the model agrees well with the experimental value curve, the relative error is minor. The maximum error is less than 3%, and the correlation coefficient is 0.9996. The Ni–W graded coating prepared by BP neural network shows good bonding with the substrate which has flat and smooth interface. The thickness of the coating is about 136 μm, which slows down the oxidation of the substrate and plays an effective role in protecting the substrate.


2021 ◽  
Vol MA2021-02 (25) ◽  
pp. 795-795
Author(s):  
Arash Bahrololoomi ◽  
Hubert K. Bilan ◽  
Elizabeth J. Podlaha

Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1068
Author(s):  
Dongai Wang ◽  
Meihua Liu ◽  
Yuanmin Zhu ◽  
Feihui Li

In this study, using 45# carbon steel as the substrate, a first experimental analysis was carried out on the polarisation behaviour of different component wattage plating solutions in order to determine the reasonable content of nanodiamond particles in a nickel/nanodiamond composite plating solution. Secondly, the effect of double-pulse forward and reverse duty cycle and reverse working time on the performance of nickel/nanodiamond composite plating was then investigated by testing the thickness, hardness and surface roughness of the composite plating and observing the surface micromorphology. The experimental results show that, when the content of nanodiamond particles in the plating solution is 5 g/L, the anti-pulse working time, forward and reverse pulse duty cycle of the double-pulse plating parameters are 20, 0.3 and 0.2 ms, respectively, and the composite plating layer prepared by double pulse has good comprehensive performance. This research work provides technical support for the optimisation of process parameters for the preparation of nickel/nanodiamond composite coatings by double-pulse electrodeposition.


Sign in / Sign up

Export Citation Format

Share Document