Influence of Phosphorus Grain Boundary Segregation on Fracture Behaviour of Iron-Base Alloys

2007 ◽  
Vol 567-568 ◽  
pp. 33-38
Author(s):  
Jozef Janovec ◽  
Jaroslav Pokluda ◽  
Pavel Lejček

Chemical and structural changes at the grain boundaries were investigated to quantify their influence on fracture behaviour of austenitic stainless steels and model ferritic Fe-Si-P alloys. The balance between the size and the area density of intergranular particles was found to be one of the most decisive factors influencing sensitivity of the steels to intergranular fracture. The precise dependence of the energy of intergranular fracture on the phosphorus grain boundary concentration was also determined.

2012 ◽  
Vol 525-526 ◽  
pp. 273-276 ◽  
Author(s):  
Yu Dong Fu ◽  
Qing Fen Li ◽  
Wei Xin Sun

The present work is an effort to provide experimental results focusing on segregation behavior of phosphorus at grain boundary and the intergranular fracture behavio under low tensile stresses. AES (Auger electron spectroscopy) experiments and dynamic analyses on the non-equilibrium grain-boundary segregation (NGS) of phosphorus and the SEM photos of intergranular fracture in Auger specimens in 12Cr1MoV steel were carried out in this paper. The variation of phosphorus segregation level in grain boundary under different low tensile stresses and at different temperature were obtained. Results show that NGS of phosphorus occurred in the experimental steel while subjected to low tensile stresses. Maximum values of phosphorus segregation level were obtained at the critical times. SEM photos of intergranular fracture in Auger specimens of the test steel show that the intergranular fracture rate increased with increasing concentration of phosphorus. The intergranular fracture behavior is accordant with the segregation behavior of phosphorus at grain boundary.


Sign in / Sign up

Export Citation Format

Share Document