fracture behavior
Recently Published Documents


TOTAL DOCUMENTS

4646
(FIVE YEARS 874)

H-INDEX

74
(FIVE YEARS 11)

2022 ◽  
Vol 580 ◽  
pp. 121390
Author(s):  
S.S. Hirmukhe ◽  
A.T. Joshi ◽  
I. Singh

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 542
Author(s):  
Sujjaid Khan ◽  
Longbang Qing ◽  
Iftikhar Ahmad ◽  
Ru Mu ◽  
Mengdi Bi

Aligning steel fibers is an effective way to improve the mechanical properties of steel fiber cementitious composites (SFRC). In this study, the magnetic field method was used to prepare the aligned hooked-end steel fiber cementitious composites (ASFRC) and the fracture behavior was investigated. In order to achieve the alignment of steel fibers, the key parameters including the rheology of the mixture and magnetic induction of electromagnetic field were theoretically analyzed. The results showed that, compared with SFRC, the cracking load and the ultimate load of ASFRC were increased about 24–55% and 51–86%, respectively, depending on the fiber addition content. In addition, the flexural tensile strength and residual flexural strength of ASFRC were found to increase up to 105% and 100%, respectively. The orientation of steel fibers also has a significant effect on energy consumption. The fracture energy of ASFRC was 56–70% greater than SFRC and the reinforcement effect of hooked-end steel fiber was higher than straight steel fiber. The fibers in the fracture surface showed that not only was the number of fibers of ASFRC higher than that of SFRC, but also the orientation efficiency factor of ASFRC was superior to SFRC, which explains the improvement of fracture behavior of ASFRC.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 482
Author(s):  
Kinga Korniejenko ◽  
Beata Figiela ◽  
Celina Ziejewska ◽  
Joanna Marczyk ◽  
Patrycja Bazan ◽  
...  

The aim of this article was to analyze the fracture behavior of geopolymer composites based on fly ash or metakaolin with fine aggregate and river sand, with three types of reinforcement: glass, carbon, and aramid fiber, at three different temperatures, approximately: 3 °C, 20 °C, and 50 °C. The temperatures were selected as a future work temperature for composites designed for additive manufacturing technology. The main research method used was bending strength tests in accordance with European standard EN 12390-5. The results showed that the addition of fibers significantly improved the bending strength of all composites. The best results at room temperature were achieved for the metakaolin-based composites and sand reinforced with 2% wt. aramid fiber—17 MPa. The results at 50 °C showed a significant decrease in the bending strength for almost all compositions, which are unexpected results, taking into account the fact that geopolymers are described as materials dedicated to working at high temperatures. The test at low temperature (ca. 3 °C) showed an increase in the bending strength for almost all compositions. The grounds of this type of behavior have not been clearly stated; however, the likely causes of this are discussed.


2022 ◽  
Vol 23 (1) ◽  
pp. 268-281
Author(s):  
Hanan EL BHILAT ◽  
MABCHOUR Hassan ◽  
SALMI Houda ◽  
HACHIM Abdelilah ◽  
EL HAD Khalid

The aim of the present paper is to study the effect of multi-recycling on the fracture behavior of high impact polystyrene from disposable cups. After collecting and washing the material, it was subjected to six cycles of recycling. After each cycle, it was subjected to tensile tests to determine the R-curves. The theory of the J-integral contour has been used for the development of a characterization method of the fracture strength appropriate to the case of this non-linear elastoplastic polymer material. To this end, the method of multiple specimens (Single edge notch tension SENT) of thin thickness was used, by introducing cracks of the same lengths to several identical test pieces. The results suggested a slight decrease in crack resistance of recycled high impact polystyrene, especially during the first cycle, demonstrated by a comparison of JIC values related to initiation of crack propagation. The fracture energy absorbed as a function of the cycles suggested a weakening within the material. ABSTRAK: Tujuan kajian ini adalah bagi mengkaji kesan tindak balas pada pelbagai peringkat-kitar semula ke atas kerapuhan polisterin berimpak tinggi pada cawan pakai buang. Selepas mengumpul dan membasuh cawan ini, terdapat enam peringkat kitar semula. Pada setiap peringkat, ianya akan melalui ujian tegangan bagi mendapatkan lengkung-R. Teori kamiran-J kontur telah digunakan bagi mencipta kaedah khas bagi mengkaji kekuatan retakan bersesuaian bagi kes bahan polimer elastoplastik yang tidak-linear. Sehingga kini, kaedah Regangan Tepi Takuk Tunggal (SENT) telah digunakan pada spesimen berketebalan rendah, dengan menghasilkan keretakan sama panjang di permulaan kajian di buat pada pelbagai bahan uji yang serupa. Dapatan kajian menunjukkan rintangan pada retakan telah berkurang sedikit pada polisterin kitar semula berimpak tinggi, terutama pada kitaran pertama, yang ditunjukkan pada nilai JIC pada permukaan rambatan retakan awal. Tenaga kerapuhan yang meresap pada setiap kitaran menunjukkan bahan telah melemah dari dalam.


Sign in / Sign up

Export Citation Format

Share Document