VARIABILITY AMONG APHID CLONES OF RHOPALOSIPHUM PADI L. AND SITOBION AVENAE FABR. (HOMOPTERA: APHIDIDAE) IN TRANSMISSION OF THREE PAV ISOLATES OF BARLEY YELLOW DWARF VIRUSES

1996 ◽  
Vol 128 (2) ◽  
pp. 209-217 ◽  
Author(s):  
Jing-Quan Guo ◽  
Jean-Pierre Moreau ◽  
Hervé Lapierre

AbstractVariability in vectoring efficiency among six clones of Rhopalosiphum padi L. and five clones of Sitobion avenae Fabr. in transmission of three French PAV isolates (PAV-RG, PAV-2t, and PAV-13t) of barley yellow dwarf viruses (BYDVs) on seedlings of barley (Hordeum vulgare L.) cv. Plaisant was determined. All the clones could transmit these three isolates, but their vectoring efficiency was significantly different: 91% and 56% transmission efficiencies were obtained from the most efficient clones (Rp-M and Sa-R1) but only 21% and 9% from the least efficient clones (Rp-R26 and Sa-V) with 5-day acquisition and inoculation access periods (AAP, IAP). A significant difference in overall transmission between apterous adults and winged aphids of the tested clones was also found. In most cases, apterous adults were more efficient than were winged aphids. The overall transmission efficiency of apterous adults was 1.5 and 1.7 times that of winged ones for R. padi and S. avenae, respectively. The transmissibility of PAV-RG and PAV-2t isolates was similar within each of the tested aphid clones, but that of the PAV-13t isolate differed, particularly for the poorly efficient vector clones of S. avenae. Temperature could significantly influence the vectoring efficiency of the tested clones of R. padi, but the influence was greater on Rp-R26. High temperature (25 °C) facilitated more transmission than did low temperature (14 °C), and high temperature for AAP played a more important role than it did for IAP.

1969 ◽  
Vol 47 (8) ◽  
pp. 1277-1283 ◽  
Author(s):  
C. C. Gill

Seventeen isolates of the aphid-borne barley yellow dwarf virus (BYDV), collected in southern Manitoba in 1966, were transmitted from oats to oats most efficiently by Rhopalosiphum padi. They were transmitted also by Macrosiphum avenae and all but two were transmitted by Schizaphis graminum and Acyrthosiphon dirhodum. Most of these isolates were not transmitted by R. maidis.Only 3 of 25 isolates collected in 1967 were transmitted by the five species of aphids in a pattern similar to that of the isolates collected in 1966. Twenty of the remainder were transmitted with a moderate to high degree of specificity by R. maidis, R. padi, or S. graminum. Two of the latter isolates were transmitted only by S. graminum. When the transmissibility of one of the isolates, for which S. graminum was the most efficient vector, was examined more critically, both the relative and the specific efficiency of the three vectors varied with the age of the infection in the source plants, though S. graminum was always the most efficient vector.


2016 ◽  
Vol 67 (10) ◽  
pp. 1054 ◽  
Author(s):  
Eva Beoni ◽  
Jana Chrpová ◽  
Jana Jarošová ◽  
Jiban Kumar Kundu

A survey of Barley yellow dwarf virus (BYDV) incidence in cereal crops in the Czech Republic over 4 years showed, on average, 13.3% BYDV-positive, randomly tested wheat and barley samples. The cultivated wheat and barley cultivars had different levels of susceptibility to BYDV infection. Field trials were performed with different barley and wheat breeding lines and cultivars, and resistance traits were evaluated after artificial inculcation by the viruliferous aphid vector Rhopalosiphum padi L. with BYDV-PAV. Our results showed high variability of visual symptom score (VSS) and reduction in grain weight per spike (GWS-R) in trials within the tested lines and cultivars. The barley line (WBON 96-123) and cultivars (Wysor, Travira) that contained RYd2 differed significantly from other cultivars in VSS. Line WBON 96-123 and cvv. Wysor and Yatzi showed the lowest GWS-R. Wheat line PSR 3628 and cvv. Altigo, Elan, Sparta, Aladin and Hewit showed significant difference from other cultivars in VSS. PSR 3628, Sparta, and Elan showed the lowest GWS-R. Similar results were obtained from BYDV titre analysis by RT-qPCR corresponding to the VSS and GWS-R traits. A low virus titre corresponded to low VSS and GWS-R. Hence, our results suggest that laborious and time-consuming GWS-R analysis could be replaced in some cases by qPCR-based BYDV titre analysis and, together with VSS evaluation, could enhance the efficiency of resistance assessment.


2001 ◽  
Vol 91 (8) ◽  
pp. 792-796 ◽  
Author(s):  
E. Lucio-Zavaleta ◽  
D. M. Smith ◽  
S. M. Gray

The RMV strain of Barley yellow dwarf virus (BYDV-RMV) is an unassigned member of the Luteoviridae that causes barley yellow dwarf in various cereal crops. The virus is most efficiently vectored by the aphid Rhopalosiphum maidis, but can also be vectored with varying efficiency by R. padi and Schizaphis graminum. Field collections of alate aphids migrating into the emerging winter wheat crop in the fall of 1994 in central New York identified a high proportion of R. padi transmitting BYDV-RMV. This prompted a comparison of the BYDV-RMV isolates and the R. padi populations found in the field with type virus and aphid species maintained in the laboratory. A majority of the field isolates of BYDV-RMV were similar to each other and to the type BYDV-RMV isolate in disease severity on oat and in transmission by the laboratory-maintained population of R. maidis and a field-collected population of R. maidis. However, several field populations of R. padi differed in their ability to transmit the various BYDV-RMV isolates. The transmission efficiency of the R. padi clones was increased if acquisition and inoculation feeding periods were allowed at higher temperatures. In addition, the transmission efficiency of BYDV-RMV was significantly influenced by the aphid that inoculated the virus source tissue. In general, BYDV-RMV transmission by R. padi was higher when R. padi was the aphid that inoculated the source tissue than when R. maidis was the inoculating aphid. The magnitude of the change varied among virus isolates and R. padi clones. These results indicate that, under certain environmental conditions, R. padi can play a significant role in the epidemiology of BYDV-RMV. This may be especially significant in regions where corn is a major source of virus and of aphids that can carry virus into a fall-planted wheat crop.


Author(s):  
Maria Kern ◽  
Torsten Meiners ◽  
Edgar Schliephake ◽  
Antje Habekuss ◽  
Frank Ordon ◽  
...  

AbstractDiscovering mechanisms of plant–virus–vector interactions is fundamental to understand their ecology and evolution and to apply this knowledge in plant protection. To study the influence of varying Barley yellow dwarf virus (BYDV) transmission efficiencies on host plant preference of Rhopalosiphum padi (L.) clones, we performed host choice experiments with two barley cultivars (BYDV susceptible cv. ‘Rubina’ and BYDV tolerant cv. ‘Vixen’) including healthy and virus-infected plants. For the susceptible barley cultivar ‘Rubina’, aphid clone R07 (high transmission efficiency) preferred BYDV-infected over healthy host plants after 24 h, while clones D10 (medium transmission efficiency) and R09 (low transmission efficiency) preferred neither host. In contrast, BYDV infection of ‘Vixen’ did not affect the plant’s appeal for aphid clone R07. Host plant access, indicated by ingestion and observed by electrical penetration graph technique for a period of 2 h, was facilitated on BYDV-infected cv. ‘Rubina’ for the clones R07 and D10, whereas an opposite effect was observed for the clone R09. For R07 and R09, the difference was not visible after a period of 5 h. As observed earlier for BYDV-infected wheat, enhanced emission of volatile organic compounds associated with virus-induced attraction was detected for BYDV-infected cv. ‘Rubina.’ It is concluded that host plant preference is possibly linked with a high BYDV transmission efficiency as observed for the clone R07, leading to a fitness advantage of this clone as indicated by early increased ingestion. This advantage is not present on BYDV-tolerant genotypes most likely due to the absence of infection symptoms.


1963 ◽  
Vol 95 (5) ◽  
pp. 537-547 ◽  
Author(s):  
Harvey C. Smith ◽  
W. R. Richards

AbstractAlthough Rhopalosiphum padi L. was common on cereals and Gramineae in Ontario, only a small number of R. fitchii (Sand.) were found on one grass plant in 1961. Fundatrigeniae of R. padi from Prunus virginiana L. and of R. fitchii from Crataegus spp. and Malus spp. were transferred to oats and wheat on which alienicolae of R. padi multiplied rapidly, but R. fitchii very slowly. R. fitchii transmitted all but one of the isolates of barley yellow dwarf virus (BYDV) that R. padi transmitted to Clintland 60 oats, but fewer test plants became infected, the incubation period for symptom development was longer and symptoms were less severe when R. fitchii was the vector. Both species infected more test plants after a 5-day than after a 2-day acquisition feed on the virus source. It appears that R. padi, a common and efficient vector of BYDV, has frequently been mistaken for R. fitchii which is not common on cereals and not a highly efficient vector.A dosage concept is proposed to explain differences in vector efficiencies of R. padi and R. fitchii. It is also suggested that strains of BYDV become ’adapted’ to transmission by a vector species.


2020 ◽  
Vol 110 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Jaime Jiménez ◽  
María Arias-Martín ◽  
Aránzazu Moreno ◽  
Elisa Garzo ◽  
Alberto Fereres

The distinguished intracellular stylet puncture called phloem-pd (potential drop [pd]) produced by Myzus persicae has been associated with the transmission of the semipersistently transmitted, phloem-limited Beet yellows virus (BYV, Closterovirus). However, the production of intracellular punctures in phloem cells (phloem-pd) by other aphid species and their role in the transmission of persistently transmitted, phloem-limited viruses are still unknown. Previous studies revealed that inoculation of the persistently transmitted, phloem-limited Barley yellow dwarf virus (BYDV, Luteovirus) is associated mainly with the sieve element continuous salivation phase (E1 waveform). However, the role of brief intracellular punctures that occur before the E1 phase in the inoculation of BYDV by aphids is unknown. We aimed to investigate whether the bird cherry-oat aphid Rhopalosiphum padi (Hemiptera: Aphididae) produced a stereotypical phloem-pd and to study its role in the inoculation of BYDV. The feeding behavior of viruliferous R. padi individuals in barley (Hordeum vulgare) was monitored via the electrical penetration graph (EPG) technique. The feeding process was artificially terminated after the observation of specific EPG waveforms: standard-pds, phloem-pd, and E1. Analysis of the EPG recordings revealed the production of a phloem-pd pattern by R. padi, in addition to a short, distinct E1-like pattern (short-E1), both resulting in successful inoculation of BYDV. Also, the transmission efficiency of BYDV was directly proportional to the time spent by aphids in intracellular salivation in phloem cells. Finally, we discussed the main differences between the inoculation process of semipersistent and persistently transmitted phloem-limited viruses by aphids.


1962 ◽  
Vol 42 (2) ◽  
pp. 247-251 ◽  
Author(s):  
Sze-Jih Hsu ◽  
A. G. Robinson

Forty-nine of one hundred and thirty-six barley varieties tested in the greenhouse showed some resistance (antibiosis or tolerance) to the aphid Rhopalosiphum padi (L.). When the 49 varieties were retested in the field, 14 demonstrated both antibiosis and tolerance. There was no significant difference in antibiosis among these 14 varieties. No varieties tested were completely immune to the aphid. The varieties Rojo C.I. 5401 and C.I. 3906-1, which showed antibiosis and tolerance to infestations of the aphid in both greenhouse and field, are known to be resistant to the barley yellow dwarf virus. The varieties C.I. 2376, Velvon 11 C.I. 7088, Compana C.I. 5438, Club Mariout C.I. 261 and Kindred C.I. 6969 showed some resistance to the aphid, and are also known to show varying degrees of resistance to the virus, indicating that there may be some correlation between vector resistance and virus resistance in barley plants.


1983 ◽  
Vol 61 (7) ◽  
pp. 1935-1940 ◽  
Author(s):  
C. J. Andrews ◽  
Y. C. Paliwal

Cold hardness and ice encasement tolerance of 'Fredrick' and 'Norstar' winter wheats as affected by infection with barley yellow dwarf virus (BYDV) were determined during inoculation, disease development periods, and low-temperature growth. Plants were either prehardened to cold, or warm grown before infection; two disease development periods (DDP) were utilized. A long DDP induced greater pathogenesis and greater hardiness reduction than a short DDP. The effect of virus infection on the final level of hardiness of prehardened plants was generally greater than on that of nonprehardened plants. Viral infection reduced hardiness up to 3.5 °C in 'Fredrick' wheat, but reductions of 6–10 °C below hardiness potential were recorded after certain environmental regimes allowing disease development. Ice tolerance was reduced by BYDV infection in early low-temperature growth but was increased by infection after 4 months at low temperature. This increase in survival was associated with higher dry matter content in infected than in noninfected plants.


Sign in / Sign up

Export Citation Format

Share Document