scholarly journals Splenic Stroma-Educated Regulatory Dendritic Cells Induce Apoptosis of Activated CD4 T Cells via Fas Ligand-Enhanced IFN-γ and Nitric Oxide

2011 ◽  
Vol 188 (3) ◽  
pp. 1168-1177 ◽  
Author(s):  
Xiongfei Xu ◽  
Hai Yi ◽  
Zhenhong Guo ◽  
Cheng Qian ◽  
Sheng Xia ◽  
...  
2009 ◽  
Vol 182 (6) ◽  
pp. 3372-3379 ◽  
Author(s):  
Vincent Lombardi ◽  
Laurence Van Overtvelt ◽  
Stéphane Horiot ◽  
Philippe Moingeon

1996 ◽  
Vol 183 (4) ◽  
pp. 1789-1796 ◽  
Author(s):  
G Süss ◽  
K Shortman

Dendritic cells (DC), the most efficient antigen-presenting cells, are well equipped for activation of naive CD4+ T cells by their expression of high levels of major histocompatibility complex and costimulator molecules. We now demonstrate that some DC are equally well equipped for killing these same T cells. Murine splenic DC consist of both conventional CD8alpha- DC and a major population of CD8alpha+ DC. Whereas CD8- DC induce a vigorous proliferative response in CD4 T cells, CD8+ DC induce a lesser response that is associated with marked T cell apoptosis. By using various mixtures of T cells and DC from Fas-mutant lpr/lpr mice and Fas-ligand (FasL) mutant gld/gld mice, we show this death is due to interaction of Fas on activated T cells with FasL on CD8+ DC. Furthermore, we show by direct surface staining that CD8+ DC, but not CD8- DC, express FasL at high levels. These findings indicate that FasL+ CD8+ DC are a specialized subgroup of DC with a role in the regulation of the response of primary peripheral T cells.


2014 ◽  
Vol 20 (2) ◽  
pp. 192-201 ◽  
Author(s):  
Elizabeth O. Stenger ◽  
Brian R. Rosborough ◽  
Lisa R. Mathews ◽  
Huihui Ma ◽  
Markus Y. Mapara ◽  
...  

2005 ◽  
Vol 101 (2) ◽  
pp. 193-201 ◽  
Author(s):  
Shorena Janelidze ◽  
Karin Enell ◽  
Edward Visse ◽  
Anna Darabi ◽  
Leif G. Salford ◽  
...  

2014 ◽  
Vol 162 (1) ◽  
pp. 188-199 ◽  
Author(s):  
Jaris Valencia ◽  
Víctor G. Martínez ◽  
Laura Hidalgo ◽  
Carmen Hernández-López ◽  
Noelia M. Canseco ◽  
...  

2015 ◽  
Vol 17 (4) ◽  
pp. 275-284 ◽  
Author(s):  
Elizabeth Liu ◽  
Jennifer Van Grol ◽  
Carlos S. Subauste

2000 ◽  
Vol 192 (3) ◽  
pp. 347-358 ◽  
Author(s):  
Charles A. Scanga ◽  
V.P. Mohan ◽  
Keming Yu ◽  
Heather Joseph ◽  
Kathryn Tanaka ◽  
...  

Tuberculosis is a major cause of death in much of the world. Current estimates are that one-third of the world's population is infected with Mycobacterium tuberculosis. Most infected persons control the infection but in many cases may not eliminate the organism. Reactivation of this clinically latent infection is responsible for a large proportion of active tuberculosis cases. A major risk factor for reactivation of latent tuberculosis is HIV infection, suggesting a role for the CD4+ T cell subset in maintaining the latent persistent infection. In this study, we tested the requirement for CD4+ T cells in preventing reactivation in a murine model of latent tuberculosis. Antibody-mediated depletion of CD4+ T cells resulted in rapid reactivation of a persistent infection, with dramatically increased bacterial numbers in the organs, increased pathology in the lungs, and decreased survival. Although CD4+ T cells are believed to be a major source of interferon (IFN)-γ, expression of the gene for IFN-γ in the lungs of CD4+ T cell–depleted mice was similar to that in control mice. In addition, inducible nitric oxide synthase production and activity was unimpaired after CD4+ T cell depletion, indicating that macrophage activation was present even during CD4+ T cell deficiency. These data indicate that CD4+ T cells are necessary to prevent reactivation but may have roles in addition to IFN-γ production and macrophage activation in controlling a persistent tuberculous infection.


Sign in / Sign up

Export Citation Format

Share Document