The Prediction and Validation of Hover Performance and Detailed Blade Loads

2009 ◽  
Vol 54 (3) ◽  
pp. 32004-3200412 ◽  
Author(s):  
Sven Schmitz ◽  
Mahendra Bhagwat ◽  
Marvin A. Moulton ◽  
Francis X. Caradonna ◽  
Jean‐Jacques Chattot
2014 ◽  
Vol 59 (4) ◽  
pp. 1-11
Author(s):  
Lloyd H. Scarborough III ◽  
Christopher D. Rahn ◽  
Edward C. Smith ◽  
Kevin L. Koudela

Replacing stiff pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch-link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies.


Wind Energy ◽  
2000 ◽  
Vol 3 (1) ◽  
pp. 35-65 ◽  
Author(s):  
K. Papadopoulos ◽  
E. Morfiadakis ◽  
T. P. Philippidis ◽  
D. J. Lekou

2014 ◽  
Vol 59 (4) ◽  
pp. 1-18 ◽  
Author(s):  
Ioannis Goulos ◽  
Vassilios Pachidis ◽  
Pericles Pilidis

This paper presents a mathematical model for the simulation of rotor blade flexibility in real-time helicopter flight dynamics applications that also employs sufficient modeling fidelity for prediction of structural blade loads. A matrix/vector-based formulation is developed for the treatment of elastic blade kinematics in the time domain. A novel, second-order-accurate, finite-difference scheme is employed for the approximation of the blade motion derivatives. The proposed method is coupled with a finite-state induced-flow model, a dynamic wake distortion model, and an unsteady blade element aerodynamics model. The integrated approach is deployed to investigate trim controls, stability and control derivatives, nonlinear control response characteristics, and structural blade loads for a hingeless rotor helicopter. It is shown that the developed methodology exhibits modeling accuracy comparable to that of non-real-time comprehensive rotorcraft codes. The proposed method is suitable for real-time flight simulation, with sufficient fidelity for simultaneous prediction of oscillatory blade loads.


Sign in / Sign up

Export Citation Format

Share Document