Coupled Pitch Links for Multiharmonic Isolation Using Fluidic Circuits

2014 ◽  
Vol 59 (4) ◽  
pp. 1-11
Author(s):  
Lloyd H. Scarborough III ◽  
Christopher D. Rahn ◽  
Edward C. Smith ◽  
Kevin L. Koudela

Replacing stiff pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch-link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies.

Author(s):  
Lloyd H. Scarborough ◽  
Christopher D. Rahn ◽  
Edward C. Smith ◽  
Kevin L. Koudela

Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads for up to three main-rotor harmonics. The simulation results show loads reduction at the targeted odd and even harmonics of at least 95% and 72%, respectively.


Author(s):  
Paul J. Pearson ◽  
David M. Bevly

This paper develops two analytical models that describe the yaw dynamics of a farm tractor and can be used to design or improve steering control algorithms for the tractor. These models are verified against empirical data. The particular dynamics described are the motions from steering angle to yaw rate. A John Deere 8420 tractor, outfitted with inertial sensors and controlled through a PC-104 form factor computer, was used for experimental validation. Conditions including different implements at varying depths, as would normally be found on a farm, were tested. This paper presents the development of the analytical models, validates them against empirical data, and gives trends on how the model parameters change for different configurations.


2011 ◽  
Vol 2-3 ◽  
pp. 302-307 ◽  
Author(s):  
Tao Yu ◽  
Qing Kai Han

In the paper, a novel new gravity-constrained (GC) three-wire-driven (TWD) parallel robot is proposed. With its mechanism model, three typical kinematics analytical models, including horizontal up-down motion, pitching motion and heeling motion and their corresponding simulations are given in detail. In static analysis, the change of tensions in the wires is calculated based on previous kinematics analysis. The simulation results show the robot has good movement stability. The paper can provide useful materials to study of dynamics and control on wire-driven robot.


Author(s):  
Chih-Tang Peng ◽  
Ji-Cheng Lin ◽  
Chun-Te Lin ◽  
Kuo-Ning Chiang

In this study, a packaged silicon base piezoresistive pressure sensor with thermal stress buffer is designed, fabricated, and measured. A finite element method (FEM) is adopted for design and experimental validation of the sensor performance. Thermal and pressure loading on the sensor is applied to make a comparison between sensor experimental and simulation results. Furthermore, a method that transfers simulation stress data into output voltage is proposed in this study, the results indicate that the experimental result coincides with simulation data.


1998 ◽  
Vol 120 (2) ◽  
pp. 267-274 ◽  
Author(s):  
N. Sivashankar ◽  
A. G. Ulsoy

This paper describes a method for vehicle yaw rate estimation using two accelerometers and a steer angle sensor. This yaw rate estimate can be used as an inexpensive alternative to commercial yaw rate sensors in vehicle control applications. The proposed method combines two complementary approaches to yaw rate estimation using accelerometers. This new method is superior to either method used by itself. This paper presents the new approach, supporting analyses, simulation results and experimental validation. The simulation results are based upon both linear and nonlinear vehicle dynamics models and include important effects such as sensor drift and noise, disturbances acting on the vehicle, and model uncertainties. The experimental validation is based on test data from a specially instrumented vehicle driven on a test track. These results indicate that the proposed yaw rate estimation scheme performs well for a wide range of operating conditions and is not difficult to implement.


2009 ◽  
Vol 62 (4) ◽  
pp. 643-655 ◽  
Author(s):  
Ning Wang ◽  
Xianyao Meng ◽  
Qingyang Xu ◽  
Zuwen Wang

Most of the existing typical ship domains have been comprehensively reviewed and classified. Most of these ship domains are described in a geometrical manner that is difficult to apply to practices and simulations in marine traffic engineering. According to different types of geometrical ship domains, we have proposed mathematical models, based on which a unified analytical framework has been established. It is feasible and practical for the analytical models to be applied to the assessment of navigational safety, collision avoidance and trajectory planning, etc. Finally, some computer simulations and comparative studies of the proposed domain model have been presented and the simulation results show that the uniform analytical framework for ship domains is effective and identical to the original geometrical ones. It should be noted that the analytical domain models could be directly applied in any collision risk, collision avoidance or VTS system while the geometrical ones would be more illustrative but less practical or analytical.


Author(s):  
Hareesh K. R. Kommepalli ◽  
Kiron Mateti ◽  
Christopher D. Rahn ◽  
Srinivas A. Tadigadapa

In this paper, we present the experimental validation of the detailed models developed for the flexural motion of piezoelectric T-beam actuators. With a T-shaped cross-section, and bottom and top flange and web electrodes, a cantilevered beam can bend in both in-plane and out-of-plane directions upon actuation. Analytical models predict the tip displacement and blocking force in both directions. Mechanical dicing and flange electrode deposition was used to fabricate six meso-scale T-beam prototypes. The T-beams were experimentally tested for in-plane and out-of-plane displacements, and out-of-plane blocking force. The analytical models closely predict the T-beam displacement and blocking force performance. A nondimensional analytical model predict that all T-beam designs for both in-plane and out-of-plane actuation, regardless of scale, have nondimensional displacement and blocking force equal to nondimensional voltage. The results from experiments are favorably compared with this theoretical prediction.


Sign in / Sign up

Export Citation Format

Share Document