scholarly journals Embedding Hardy spaces $H^p$ into tent spaces and generalized integration operators

Author(s):  
Ruishen Qian ◽  
Xiangling Zhu
Keyword(s):  
2013 ◽  
Vol 57 ◽  
pp. 295-331
Author(s):  
M. Costabel ◽  
A. McIntosh ◽  
R. J. Taggart

1996 ◽  
Vol 1 (2) ◽  
pp. 193-201
Author(s):  
Helmut J. Heiming

In this paper we discuss several operator ideal properties for so called Carleson embeddings of tent spaces into specificL q(μ)-spaces, whereμis a Carleson measure on the complex unit disc. Characterizing absolutelyq-summing, absolutely continuous andq-integral Carleson embeddings in terms of the underlying measure is our main topic. The presented results extend and integrate results especially known for composition operators on Hardy spaces as well as embedding theorems for function spaces of similar kind.


2015 ◽  
Vol 58 (3) ◽  
pp. 689-716 ◽  
Author(s):  
MIKKO KEMPPAINEN

AbstractIn this paper, we study Hardy spaces associated with non-negative self-adjoint operators and develop their vector-valued theory. The complex interpolation scales of vector-valued tent spaces and Hardy spaces are extended to the endpoint p=1. The holomorphic functional calculus of L is also shown to be bounded on the associated Hardy space H1L(X). These results, along with the atomic decomposition for the aforementioned space, rely on boundedness of certain integral operators on the tent space T1(X).


2018 ◽  
Vol 9 (3) ◽  
pp. 85-94
Author(s):  
V.I. Vlasov ◽  
◽  
◽  

2021 ◽  
Vol 16 (1) ◽  
pp. 119-139
Author(s):  
Long Huang ◽  
Der-Chen Chang ◽  
Dachun Yang

2010 ◽  
Vol 26 (2) ◽  
pp. 122-139 ◽  
Author(s):  
Zhuoping Ruan
Keyword(s):  

2021 ◽  
Vol 9 (1) ◽  
pp. 65-89
Author(s):  
Zhenzhen Yang ◽  
Yajuan Yang ◽  
Jiawei Sun ◽  
Baode Li

Abstract Let p(·) : ℝ n → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝ n introduced by Dekel et al. [12]. In this article, we introduce highly geometric Hardy spaces Hp (·)(Θ) via the radial grand maximal function and then obtain its atomic decomposition, which generalizes that of Hardy spaces Hp (Θ) on ℝ n with pointwise variable anisotropy of Dekel et al. [16] and variable anisotropic Hardy spaces of Liu et al. [24]. As an application, we establish the boundedness of variable anisotropic singular integral operators from Hp (·)(Θ) to Lp (·)(ℝ n ) in general and from Hp (·)(Θ) to itself under the moment condition, which generalizes the previous work of Bownik et al. [6] on Hp (Θ).


2020 ◽  
Vol 32 (4) ◽  
pp. 919-936 ◽  
Author(s):  
Jiao Chen ◽  
Wei Ding ◽  
Guozhen Lu

AbstractAfter the celebrated work of L. Hörmander on the one-parameter pseudo-differential operators, the applications of pseudo-differential operators have played an important role in partial differential equations, geometric analysis, harmonic analysis, theory of several complex variables and other branches of modern analysis. For instance, they are used to construct parametrices and establish the regularity of solutions to PDEs such as the {\overline{\partial}} problem. The study of Fourier multipliers, pseudo-differential operators and Fourier integral operators has stimulated further such applications. It is well known that the one-parameter pseudo-differential operators are {L^{p}({\mathbb{R}^{n}})} bounded for {1<p<\infty}, but only bounded on local Hardy spaces {h^{p}({\mathbb{R}^{n}})} introduced by Goldberg in [D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 1979, 1, 27–42] for {0<p\leq 1}. Though much work has been done on the {L^{p}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} boundedness for {1<p<\infty} and Hardy {H^{p}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} boundedness for {0<p\leq 1} for multi-parameter Fourier multipliers and singular integral operators, not much has been done yet for the boundedness of multi-parameter pseudo-differential operators in the range of {0<p\leq 1}. The main purpose of this paper is to establish the boundedness of multi-parameter pseudo-differential operators on multi-parameter local Hardy spaces {h^{p}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} for {0<p\leq 1} recently introduced by Ding, Lu and Zhu in [W. Ding, G. Lu and Y. Zhu, Multi-parameter local Hardy spaces, Nonlinear Anal. 184 2019, 352–380].


Sign in / Sign up

Export Citation Format

Share Document