scholarly journals Harmonic analysis on a nilpotent Lie group and representations of a solvable Lie group on ∂b cohomology spaces

1987 ◽  
Vol 13 (2) ◽  
pp. 277-332 ◽  
Author(s):  
Takaaki NOMURA
1991 ◽  
Vol 123 ◽  
pp. 103-117 ◽  
Author(s):  
Jae-Hyun Yang

A certain nilpotent Lie group plays an important role in the study of the foundations of quantum mechanics ([Wey]) and of the theory of theta series (see [C], [I] and [Wei]). This work shows how theta series are applied to decompose the natural unitary representation of a Heisenberg group.


2020 ◽  
pp. 1-20
Author(s):  
RAJDIP PALIT ◽  
RIDDHI SHAH

Abstract For a locally compact group G, we study the distality of the action of automorphisms T of G on Sub G , the compact space of closed subgroups of G endowed with the Chabauty topology. For a certain class of discrete groups G, we show that T acts distally on Sub G if and only if T n is the identity map for some $n\in\mathbb N$ . As an application, we get that for a T-invariant lattice Γ in a simply connected nilpotent Lie group G, T acts distally on Sub G if and only if it acts distally on SubΓ. This also holds for any closed T-invariant co-compact subgroup Γ in G. For a lattice Γ in a simply connected solvable Lie group, we study conditions under which its automorphisms act distally on SubΓ. We construct an example highlighting the difference between the behaviour of automorphisms on a lattice in a solvable Lie group and that in a nilpotent Lie group. We also characterise automorphisms of a lattice Γ in a connected semisimple Lie group which act distally on SubΓ. For torsion-free compactly generated nilpotent (metrisable) groups G, we obtain the following characterisation: T acts distally on Sub G if and only if T is contained in a compact subgroup of Aut(G). Using these results, we characterise the class of such groups G which act distally on Sub G . We also show that any compactly generated distal group G is Lie projective.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jonas Deré ◽  
Marcos Origlia

Abstract Every simply connected and connected solvable Lie group 𝐺 admits a simply transitive action on a nilpotent Lie group 𝐻 via affine transformations. Although the existence is guaranteed, not much is known about which Lie groups 𝐺 can act simply transitively on which Lie groups 𝐻. So far, the focus was mainly on the case where 𝐺 is also nilpotent, leading to a characterization depending only on the corresponding Lie algebras and related to the notion of post-Lie algebra structures. This paper studies two different aspects of this problem. First, we give a method to check whether a given action ρ : G → Aff ⁡ ( H ) \rho\colon G\to\operatorname{Aff}(H) is simply transitive by looking only at the induced morphism φ : g → aff ⁡ ( h ) \varphi\colon\mathfrak{g}\to\operatorname{aff}(\mathfrak{h}) between the corresponding Lie algebras. Secondly, we show how to check whether a given solvable Lie group 𝐺 acts simply transitively on a given nilpotent Lie group 𝐻, again by studying properties of the corresponding Lie algebras. The main tool for both methods is the semisimple splitting of a solvable Lie algebra and its relation to the algebraic hull, which we also define on the level of Lie algebras. As an application, we give a full description of the possibilities for simply transitive actions up to dimension 4.


2005 ◽  
Vol 16 (09) ◽  
pp. 941-955 ◽  
Author(s):  
ALI BAKLOUTI ◽  
FATMA KHLIF

Let G be a connected, simply connected nilpotent Lie group, H and K be connected subgroups of G. We show in this paper that the action of K on X = G/H is proper if and only if the triple (G,H,K) has the compact intersection property in both cases where G is at most three-step and where G is special, extending then earlier cases. The result is also proved for exponential homogeneous space on which acts a maximal subgroup.


1999 ◽  
Vol 19 (3) ◽  
pp. 559-569
Author(s):  
D. BENARDETE ◽  
S. G. DANI

Given a Lie group $G$ and a lattice $\Gamma$ in $G$, a one-parameter subgroup $\phi$ of $G$ is said to be rigid if for any other one-parameter subgroup $\psi$, the flows induced by $\phi$ and $\psi$ on $\Gamma\backslash G$ (by right translations) are topologically orbit-equivalent only if they are affinely orbit-equivalent. It was previously known that if $G$ is a simply connected solvable Lie group such that all the eigenvalues of $\mathrm{Ad} (g) $, $g\in G$, are real, then all one-parameter subgroups of $G$ are rigid for any lattice in $G$. Here we consider a complementary case, in which the eigenvalues of $\mathrm{Ad} (g)$, $g\in G$, form the unit circle of complex numbers.Let $G$ be the semidirect product $N \rtimes M$, where $M$ and $N$ are finite-dimensional real vector spaces and where the action of $M$ on the normal subgroup $N$ is such that the center of $G$ is a lattice in $M$. We prove that there is a generic class of abelian lattices $\Gamma$ in $G$ such that any semisimple one-parameter subgroup $\phi$ (namely $\phi$ such that $\mathrm{Ad} (\phi_t)$ is diagonalizable over the complex numbers for all $t$) is rigid for $\Gamma$ (see Theorem 1.4). We also show that, on the other hand, there are fairly high-dimensional spaces of abelian lattices for which some semisimple $\phi$ are not rigid (see Corollary 4.3); further, there are non-rigid semisimple $\phi$ for which the induced flow is ergodic.


2016 ◽  
Vol 08 (02) ◽  
pp. 273-285 ◽  
Author(s):  
Hisashi Kasuya

For a lattice [Formula: see text] of a simply connected solvable Lie group [Formula: see text], we describe the analytic germ in the variety of representations of [Formula: see text] at the trivial representation as an analytic germ which is linearly embedded in the analytic germ associated with the nilpotent Lie algebra determined by [Formula: see text]. By this description, under certain assumption, we study the singularity of the analytic germ in the variety of representations of [Formula: see text] at the trivial representation by using the Kuranishi space construction. By a similar technique, we also study deformations of holomorphic structures of trivial vector bundles over complex parallelizable solvmanifolds.


Sign in / Sign up

Export Citation Format

Share Document