scholarly journals Thin lenses of asymmetric power

2009 ◽  
Vol 68 (2) ◽  
Author(s):  
W. F. Harris ◽  
R. D. Van Gool

It is generally supposed that thin systems, including refracting surfaces and thin lenses, have powers that are necessarily symmetric.  In other words they have powers which can be represented assymmetric dioptric power matrices and in the familar spherocylindrical form used in optometry and ophthalmology.  This paper shows that this is not correct and that it is indeed possible for a thin system to have a power that is not symmetric and which cannot be expressed in spherocylindrical form.  Thin systems of asymmetric power are illustratedby means of a thin lens that is modelled with small prisms and is chosen to have a dioptric power ma-trix that is antisymmetric.  Similar models can be devised for a thin system whose dioptric power matrix is any  2 2 ×  matrix.  Thus any power, symmetric, asymmetric or antisymmetric, is possible for a thin system.  In this sense our understanding of the power of thin systems is now complete.

1997 ◽  
Vol 17 (6) ◽  
pp. 522-529
Author(s):  
Jose Alonso ◽  
Jose A. Gomez-Pedrero ◽  
Eusebio Bernabeu

1997 ◽  
Vol 17 (6) ◽  
pp. 522-529 ◽  
Author(s):  
José Alonso ◽  
José A. Gómez-Pedrero ◽  
Eusebio Bernabeu

2013 ◽  
Vol 72 (4) ◽  
Author(s):  
William Frith Harris

An appendix to Le Grand’s 1945 book, Optique Physiologique: Tome Premier: La Dioptrique de l’Œil et Sa Correction, briefly dealt with the application of matrices in optics.  However the appendix was omitted from the well-known English translation, Physiological Optics, which appeared in 1980.  Consequently the material is all but forgotten.  This is unfortunate in view of the importance of the dioptric power matrix and the ray transference which entered the optometricliterature many years later.  Motivated by the perception that there has not been enough care in optometry to attribute concepts appropriately this paper attempts a careful analysis of Le Grand’s thinking as reflected in his appendix.  A translation into English is provided in the appendix to this paper.  The paper opens with a summary of the basics of Gaussian and linear optics sufficient for the interpretation of Le Grand’s appendix which follows.  The paper looks more particularly at what Le Grand says in relation to the transference and the dioptric power matrix though many other issues are also touched on including the conditions under which distant objects will map to clear images on the retina and, more particularly, to clear images that are undistorted.  Detailed annotations of Le Grand’s translated appendix are provided. (S Afr Optom 2013 72(4) 145-166)


2009 ◽  
Vol 68 (2) ◽  
Author(s):  
W. F. Harris

That a thin refracting element can have a dioptric power which is asymmetric immediately raises questions at the fundamentals of linear optics.  In optometry the important concept of vergence, in particular, depends on the concept of a pencil of rays which in turn depends on the existence of a focus.  But systems that contain refracting elements of asymmetric power may have no focus at all.  Thus the existence of thin systems with asym-metric power forces one to go back to basics and redevelop a linear optics from scratch that is sufficiently general to be able to accommodate suchsystems.  This paper offers an axiomatic approach to such a generalized linear optics.  The paper makes use of two axioms: (i) a ray in a homogeneous medium is a segment of a straight line, and (ii) at an interface between two homogeneous media a ray refracts according to Snell’s equation.  The familiar paraxial assumption of linear optics is also made.  From the axioms a pencil of rays at a transverse plane T in a homogeneous medium is defined formally (Definition 1) as an equivalence relation with no necessary association with a focus.  At T the reduced inclination of a ray in a pencil is an af-fine function of its transverse position.  If the pencilis centred the function is linear.  The multiplying factor M, called the divergency of the pencil at T, is a real  2 2×  matrix.  Equations are derived for the change of divergency across thin systems and homogeneous gaps.  Although divergency is un-defined at refracting surfaces and focal planes the pencil of rays is defined at every transverse plane ina system (Definition 2).  The eigenstructure gives aprincipal meridional representation of divergency;and divergency can be decomposed into four natural components.  Depending on its divergency a pencil in a homogeneous gap may have exactly one point focus, one line focus, two line foci or no foci.Equations are presented for the position of a focusand of its orientation in the case of a line focus.  All possible cases are examined.  The equations allow matrix step-along procedures for optical systems in general including those with elements that haveasymmetric power.  The negative of the divergencyis the (generalized) vergence of the pencil.


2017 ◽  
Vol 22 (3) ◽  
pp. 253-260
Author(s):  
Dong-Sik Yu ◽  
Hyun Gug Cho ◽  
Sang-Yeob Kim, ◽  
Hyeong-Su Kim, ◽  
Byeong-Yeon Moon

Sign in / Sign up

Export Citation Format

Share Document