thin lens
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 22)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Bingyun Qi ◽  
Wei Chen ◽  
Xiong Dun ◽  
Xiang Hao ◽  
rui wang ◽  
...  

2022 ◽  
pp. 429-455
Author(s):  
Lakshminarayan Hazra
Keyword(s):  

2022 ◽  
Vol 14 (4) ◽  
pp. 118-125
Author(s):  
I. E. Ioshin

Effective rehabilitation of patients with cataracts who underwent keratorefractive surgeries requires that the optical power of the IOL be calculated correctly to avoid hyperopic error. The purpose of the 2nd part of the research (for the 1st part, see ROJ, 2021; 14 (2): 55–58) is to present the results of cataract phacoemulsification in patients subjected to keratorefractive surgery based on the author’s algorithm for calculating the optical power of the IOL. Material and methods. The algorithm used optical biometry with an IOL-Master device. The main technique of improving the accuracy of IOL calculation after keratorefractive operations has been to introduce amendments to standard IOL calculation formulas. This work proposes an alternative, which consists in using the Hoffer Q formula, as it is more consistent with changes in the anterior segment of the myopic eye after keratorefractive surgery than other basic. The main distinguishing feature of the Hoffer Q formula is that the corneal refraction is not converted into the radius of curvature but is applied directly as the optical power of a “thin lens”. Results. The empirical customized correction was +1.0 D with regard to the estimated planned postoperative refraction (for patients with initial myopia from -3 to -9 D). The use of the “thin lens” principle made it possible to extrapolate this formula and apply it after LASIK surgery and after radial keratotomy. Conclusion. The proposed technique of IOL calculation was implemented for cataract phacoemulsification in over 200 patients who underwent keratorefractive surgeries. No cases of hyperopic shift of postoperative refraction were noted. The deviation from the planned myopic refraction did not exceed 1.0 D.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 417
Author(s):  
Paolo Madonia ◽  
Gloria Campilongo ◽  
Marianna Cangemi ◽  
Maria Luisa Carapezza ◽  
Salvatore Inguaggiato ◽  
...  

Although groundwater is a strategic source in volcanic islands, most hydrogeochemical research on this topic has been focused on volcanic activity monitoring, overlooking general hydrogeological aspects. The same applies to one of the most studied volcanoes in the world, Stromboli Island (Italy). Here, we provide a hydrogeological scheme of its coastal aquifer, retrieving inferences about its potential use as a water supply source and for optimizing monitoring protocols for volcanic surveillance. Starting from the hydrogeochemical literature background, we analyzed new data, acquired both for volcano monitoring purposes and during specific surveys. Among these, there were saturated hydraulic conductivity measurements of selected rock samples and precise determinations of water table elevations based on GNSS surveys of wells. We identified a ubiquitous thin lens of brackish water floating on seawater and composed of a variable mixing of marine and meteoric components; inlets of hydrothermal fluids to the aquifer are basically gases, mainly CO2. Based on its hydrogeochemical character, the coastal aquifer of Stromboli could be used as a water supply source after desalinization by reverse osmosis, while the wells located far from the seashore are the most interesting for volcano monitoring, because they are less disturbed by the shallow geochemical noise.


Sign in / Sign up

Export Citation Format

Share Document