scholarly journals The study of anticancer and antifungal activities of Pistacia integerrima extract In vitro

2012 ◽  
Vol 74 (4) ◽  
pp. 375 ◽  
Author(s):  
M Zia ◽  
A Waheed ◽  
S Ahmed ◽  
MF Chaudhary ◽  
Y Bibi ◽  
...  
RSC Advances ◽  
2020 ◽  
Vol 10 (38) ◽  
pp. 22318-22323
Author(s):  
Maja Karaman ◽  
Milan Vraneš ◽  
Aleksandar Tot ◽  
Snežana Papović ◽  
Dragana Miljaković ◽  
...  

The objective of this study was to examine the in vitro antifungal activities of 18 newly synthesized ionic liquids (ILs) against three Alternaria strains: A. padwickii, A. dauci and A. linicola.


Author(s):  
Wuraola Funmi Ogundipe ◽  
Ayotunde Ajoke Pitan ◽  
Oluwafemi Michael Adedire ◽  
Adekunle Opeyemi Farinu ◽  
Barry Oyeyemi Oyewole

2010 ◽  
Vol 65 (7-8) ◽  
pp. 437-439 ◽  
Author(s):  
Hui Xu ◽  
Qin Wang ◽  
Wen-Bin Yang

Nine indole derivatives were evaluated in vitro against Fusarium graminearum, Alternaria alternata, Helminthosporium sorokinianum, Pyricularia oryzae, Fusarium oxysporum f. sp. vasinfectum, Fusarium oxysporum f. sp. cucumarinum, and Alternaria brassicae. Most of the compounds were found to possess antifungal activities. Especially compounds 2, 5, 8, and 9 exhibited broad-spectrum antifungal activities against the above-mentioned seven phytopathogenic fungi, and showed more potent activities than hymexazole, a commercial agricultural fungicide.


2021 ◽  
Vol 43 (5) ◽  
pp. 578-578
Author(s):  
Khalil Ahmad Khalil Ahmad ◽  
Habib ur Rehman Shah Habib ur Rehman Shah ◽  
Areeba Ashfaq Areeba Ashfaq ◽  
Muhammad Ashfaq Muhammad Ashfaq ◽  
Muhammad Kashif Muhammad Kashif ◽  
...  

In this study, In Vitro antibacterial and antifungal activities of azo series based on transition metal complexes (Cu2+, Zn2+, Mn2+, Co2+ and Ni2+) with already our reported ligands named as; [(E)-1-(1, 3-dioxolan-2-yl)-2-phenyldiazene] (K-1), [(E)-1-(1, 3-dioxolan-2-yl)-2-(4-methylphenyl)diazene] (K-2), 2-[(E)-phenyl diazenyl]-1H-benzimidazole] (K-3), [(E)-1-(1, 3-dioxolan-2-yl)-2-(4-ethylphenyl)diazene] (K-4), and [(E)-1-(1, 3-dioxolan-2-yl)-2-(2-methylphenyl)-diazene] (K-5) were studied. FTIR 1H-NMR and mass spectrometric techniques were applied for interpretation of synthesized complexes. 4.05-4.07 ppm chemical shift appearance of azo group confirms azo coupling with transition metal complexes. N=N, C-H, C-N and C-O groups are also confirmed by FTIR which exhibited peaks at 1400-1500, 2090-3090, 1100-1180, 1010-1060 and 625-780 cm-1. Furthermore, mass spectroscopic data also gives strong indication for the synthesis of metal complexes. All the newly synthesized complexes were screened for their antibacterial and antifungal activities. Antibacterial and antifungal activity against S. aureus, E.coli and A.niger, A.ustus and C.albican at conc. 250 and#181;g/ml showed excellent activity by K-1 complexes (Co2+, Cu2+, Ni2+), K-5 complexes (Zn2+, Mn2+, Cu2+), K-2 complexes (Co2+, Cu2+, Mn2+) and K-3 (Zn2+, Mn2+, Co2+, Cu2+) as compared to standard drug (Ampicillin). Hence, based on this study, it was concluded that these azo based complexes may act as a platform for designing more active antibacterial and antifungal agents.


Sign in / Sign up

Export Citation Format

Share Document