scholarly journals Ionic liquids as potentially new antifungal agents against Alternaria species

RSC Advances ◽  
2020 ◽  
Vol 10 (38) ◽  
pp. 22318-22323
Author(s):  
Maja Karaman ◽  
Milan Vraneš ◽  
Aleksandar Tot ◽  
Snežana Papović ◽  
Dragana Miljaković ◽  
...  

The objective of this study was to examine the in vitro antifungal activities of 18 newly synthesized ionic liquids (ILs) against three Alternaria strains: A. padwickii, A. dauci and A. linicola.

2021 ◽  
Vol 43 (5) ◽  
pp. 578-578
Author(s):  
Khalil Ahmad Khalil Ahmad ◽  
Habib ur Rehman Shah Habib ur Rehman Shah ◽  
Areeba Ashfaq Areeba Ashfaq ◽  
Muhammad Ashfaq Muhammad Ashfaq ◽  
Muhammad Kashif Muhammad Kashif ◽  
...  

In this study, In Vitro antibacterial and antifungal activities of azo series based on transition metal complexes (Cu2+, Zn2+, Mn2+, Co2+ and Ni2+) with already our reported ligands named as; [(E)-1-(1, 3-dioxolan-2-yl)-2-phenyldiazene] (K-1), [(E)-1-(1, 3-dioxolan-2-yl)-2-(4-methylphenyl)diazene] (K-2), 2-[(E)-phenyl diazenyl]-1H-benzimidazole] (K-3), [(E)-1-(1, 3-dioxolan-2-yl)-2-(4-ethylphenyl)diazene] (K-4), and [(E)-1-(1, 3-dioxolan-2-yl)-2-(2-methylphenyl)-diazene] (K-5) were studied. FTIR 1H-NMR and mass spectrometric techniques were applied for interpretation of synthesized complexes. 4.05-4.07 ppm chemical shift appearance of azo group confirms azo coupling with transition metal complexes. N=N, C-H, C-N and C-O groups are also confirmed by FTIR which exhibited peaks at 1400-1500, 2090-3090, 1100-1180, 1010-1060 and 625-780 cm-1. Furthermore, mass spectroscopic data also gives strong indication for the synthesis of metal complexes. All the newly synthesized complexes were screened for their antibacterial and antifungal activities. Antibacterial and antifungal activity against S. aureus, E.coli and A.niger, A.ustus and C.albican at conc. 250 and#181;g/ml showed excellent activity by K-1 complexes (Co2+, Cu2+, Ni2+), K-5 complexes (Zn2+, Mn2+, Cu2+), K-2 complexes (Co2+, Cu2+, Mn2+) and K-3 (Zn2+, Mn2+, Co2+, Cu2+) as compared to standard drug (Ampicillin). Hence, based on this study, it was concluded that these azo based complexes may act as a platform for designing more active antibacterial and antifungal agents.


1996 ◽  
Vol 40 (12) ◽  
pp. 2710-2713 ◽  
Author(s):  
K N Sorensen ◽  
K H Kim ◽  
J Y Takemoto

Recent increases in fungal infections, the few available antifungal drugs, and increasing fungal resistance to the available antifungal drugs have resulted in a broadening of the search for new antifungal agents. Strains of Pseudomonas syringae pv. syringae produce cyclic lipodepsinonapeptides with antifungal activity. The in vitro antifungal and fungicidal activities of three cyclic lipodepsinonapeptides (syringomycin E, syringotoxin B, and syringostatin A) against medically important isolates were evaluated by a standard broth microdilution susceptibility method. Erythrocyte toxicities were also evaluated. All three compounds showed broad antifungal activities and fungicidal actions against most of the fungi tested. Overall, the cyclic lipodepsinonapeptides were more effective against yeasts than against the filamentous fungi. Syringomycin E and syringostatin A had very similar antifungal activities (2.5 to > 40 micrograms/ml) and erythrocyte toxicities. Syringotoxin B was generally less active (0.8 to 200 micrograms/ml) than syringomycin E and syringostatin A against most fungi and was less toxic to erythrocytes. With opportunities for modification, these compounds are potential lead compounds for improved antifungal agents.


2015 ◽  
Vol 59 (7) ◽  
pp. 4308-4311 ◽  
Author(s):  
Frédéric Lamoth ◽  
Barbara D. Alexander

ABSTRACTThe limited armamentarium of active and oral antifungal drugs against emerging non-Aspergillusmolds is of particular concern. Current antifungal agents and the new orally available beta-1,3-d-glucan synthase inhibitor SCY-078 were testedin vitroagainst 135 clinical non-Aspergillusmold isolates. Akin to echinocandins, SCY-078 showed no or poor activity againstMucoromycotinaandFusariumspp. However, SCY-078 was highly active againstPaecilomyces variotiiand was the only compound displaying some activity against notoriously panresistantScedosporium prolificans.


2005 ◽  
Vol 49 (4) ◽  
pp. 1364-1368 ◽  
Author(s):  
Wendy W. J. van de Sande ◽  
Ad Luijendijk ◽  
Abdalla O. A. Ahmed ◽  
Irma A. J. M. Bakker-Woudenberg ◽  
Alex van Belkum

ABSTRACT The in vitro susceptibilities of 36 clinical isolates of Madurella mycetomatis, the prime agent of eumycetoma in Africa, to ketoconazole, itraconazole, fluconazole, voriconazole, amphotericin B, and flucytosine were determined by the Sensititre YeastOne system. This system appeared to be a rapid and easy test, and by use of hyphal suspensions it generated results comparable to those of a modified NCCLS method. After 10 days of incubation, the antifungal activities of ketoconazole (MIC at which 90% of isolates were inhibited [MIC90], 0.125 μg/ml), itraconazole (MIC90, 0.064 μg/ml), and voriconazole (MIC90, 0.125 μg/ml) appeared superior to those of fluconazole (MIC90, 128 μg/ml) and amphotericin B (MIC90, 1 μg/ml), with MICs in the clinically relevant range. All isolates were resistant to flucytosine (all MICs above 64 μg/ml). Based on the relatively broad range of MICs obtained for the antifungal agents, routine testing of M. mycetomatis isolates for susceptibility to antifungal agents seems to be relevant to adequate therapeutic management.


2002 ◽  
Vol 46 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Joseph Meletiadis ◽  
Jacques F. G. M. Meis ◽  
Johan W. Mouton ◽  
Juan Luis Rodriquez-Tudela ◽  
J. Peter Donnelly ◽  
...  

ABSTRACT The susceptibilities of 13 clinical isolates of Scedosporium apiospermum and 55 clinical isolates of S. prolificans to new and conventional drugs belonging to three different classes of antifungal agents, the azoles (miconazole, itraconazole, voriconazole, UR-9825, posaconazole), the polyenes (amphotericin B, nystatin and liposomal nystatin), and allylamines (terbinafine), were studied by use of proposed standard M38-P of NCCLS. Low growth-inhibitory antifungal activities were found in vitro for most of the drugs tested against S. prolificans isolates, with the MICs at which 90% of isolates are inhibited (MIC90s) being >8 μg/ml; the MIC90s of voriconazole and UR-9825, however, were 4 μg/ml. S. apiospermum isolates were more susceptible in vitro, with the highest activity exhibited by voriconazole (MIC90s, 0.5 μg/ml), followed by miconazole (MIC90s, 1 μg/ml), UR-9825 and posaconazole (MIC90s, 2 μg/ml), and itraconazole (MIC90s, 4 μg/ml). The MICs of terbinafine, amphotericin B, and the two formulations of nystatin (for which no statistically significant differences in antifungal activities were found for the two species) for S. apiospermum isolates were high. Cross-resistance was observed among all the azoles except posaconazole and among all the polyenes except the lipid formulation. A distribution analysis was performed with the MICs of each drug and for each species. Bimodal and skewed MIC distributions were obtained, and cutoffs indicating the borders of different MIC subpopulations of the distributions were determined on the basis of the normal plot technique. These cutoffs were in many cases reproducible between 48 and 72 h.


1991 ◽  
Vol 53 (1) ◽  
pp. 144-151 ◽  
Author(s):  
Mamoru YOKOO ◽  
Tadashi ARIKA ◽  
Yoshiro SOH

Sign in / Sign up

Export Citation Format

Share Document