transition metal complexes
Recently Published Documents





Chemosphere ◽  
2022 ◽  
Vol 289 ◽  
pp. 133167
Seth Sheeba Thavamani ◽  
Thomas Peter Amaladhas ◽  
Mohamad S. AlSalhi ◽  
Sandhanasamy Devanesan ◽  
Marcello Nicoletti

2022 ◽  
Philipp Dabringhaus ◽  
Julie Willrett ◽  
Ingo Krossing

Abstract Low-valent aluminium compounds are among the most reactive and widely researched main-group compounds. Since the isolation of [(AlCp*)4] in 1991 as the first stable, molecular AlI compound, a variety of highly reactive neutral or anionic low-valent aluminium complexes were developed. In particular, the strongly basic aluminyl anions allowed for nucleophilic activation of a large variety of small molecules and formation of elusive transition-metal complexes. By contrast, an accessible cationic, low-valent aluminium compound combining the nucleophilicity of low-valent compounds with the electrophilicity of aluminium is hitherto unknown. Here, we report the synthesis of [Al(AlCp*)3]+[Al(ORF)4]– (RF = C(CF3)3) via a simple metathesis route. Unexpectedly, the complex ion forms a dimer in the solid state and in concentrated solutions. Addition of Lewis bases results in monomerization and coordination to the unique formal Al+ atom giving [(L)xAl(AlCp*)3]+ salts with L = hexaphenylcarbodiphosporane (cdp; x = 1), tetramethylethylenediamine (tmeda; x = 1) and 4-dimethylamino-pyridine (dmap; x = 3). Depending on the donor strength of the ligand added, the Al+–AlCp* bonds in the [(L)xAl(AlCp*)3]+ cluster cations can be finely tuned between very strong (L = nothing) to very weak and approaching isolated [Al(L)3]+ ions (L = dmap). We anticipate our easily accessible low-valent aluminium cation salts to be the starting point for investigation and potential application of this unusual compound class. In particular, the ambiphilic reactivity of the cationic, low-valent compounds will be studied. Moreover, knowledge gained from the stabilization of the reported complex salts is expected to facilitate the isolation and application of novel cationic, low-valent Al complexes.

2022 ◽  
Vol 35 (1) ◽  
Lizhi Tang ◽  
Yanbin Zhang ◽  
Changhe Li ◽  
Zongming Zhou ◽  
Xiaolin Nie ◽  

AbstractThe application of cutting fluid in the field of engineering manufacturing has a history of hundreds of years, and it plays a vital role in the processing efficiency and surface quality of parts. Among them, water-based cutting fluid accounts for more than 90% of the consumption of cutting fluid. However, long-term recycling of water-based cutting fluid could easily cause deterioration, and the breeding of bacteria could cause the cutting fluid to fail, increase manufacturing costs, and even endanger the health of workers. Traditional bactericides could improve the biological stability of cutting fluids, but they are toxic to the environment and do not conform to the development trend of low-carbon manufacturing. Low-carbon manufacturing is inevitable and the direction of sustainable manufacturing. The use of nanomaterials, transition metal complexes, and physical sterilization methods on the bacterial cell membrane and genetic material could effectively solve this problem. In this article, the mechanism of action of additives and microbial metabolites was first analyzed. Then, the denaturation mechanism of traditional bactericides on the target protein and the effect of sterilization efficiency were summarized. Further, the mechanism of nanomaterials disrupting cell membrane potential was discussed. The effects of lipophilicity and the atomic number of transition metal complexes on cell membrane penetration were also summarized, and the effects of ultraviolet rays and ozone on the destruction of bacterial genetic material were reviewed. In other words, the bactericidal performance, hazard, degradability, and economics of various sterilization methods were comprehensively evaluated, and the potential development direction of improving the biological stability of cutting fluid was proposed.

Raphael M. Jay ◽  
Kristjan Kunnus ◽  
Philippe Wernet ◽  
Kelly J. Gaffney

The atomic specificity of X-ray spectroscopies provides a distinct perspective on molecular electronic structure. For 3 d metal coordination and organometallic complexes, the combination of metal- and ligand-specific X-ray spectroscopies directly interrogates metal–ligand covalency—the hybridization of metal and ligand electronic states. Resonant inelastic X-ray scattering (RIXS), the X-ray analog of resonance Raman scattering, provides access to all classes of valence excited states in transition-metal complexes, making it a particularly powerful means of characterizing the valence electronic structure of 3 d metal complexes. Recent advances in X-ray free-electron laser sources have enabled RIXS to be extended to the ultrafast time domain. We review RIXS studies of two archetypical photochemical processes: charge-transfer excitation in ferricyanide and ligand photodissociation in iron pentacarbonyl. These studies demonstrate femtosecond-resolution RIXS can directly characterize the time-evolving electronic structure, including the evolution of the metal–ligand covalency. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see for revised estimates.

Sudheer S. Kurup ◽  
Sandra Nasser ◽  
Cassandra L. Ward ◽  
Stanislav Groysman

A new sterically bulky chelating bis(alkoxide) ligand 3,3′-([1,1′:4′,1′′-terphenyl]-2,2′′-diyl)bis(2,2,4,4-tetramethylpentan-3-ol), (H2[OO]tBu), was prepared in a two-step process as the dichloromethane monosolvate, C36H50O2·CH2Cl2. The first step is a Suzuki–Miyaura coupling reaction between 2-bromophenylboronic acid and 1,4-diiodobenzene. The resulting 2,2′′-dibromo-1,1′:4′,1′′-terphenyl was reacted with t BuLi and hexamethylacetone to obtain the desired product. The crystal structure of H2[OO]tBu revealed an anti conformation of the [CPh2(OH)] fragments relative to the central phenyl. Furthermore, the hydroxyl groups point away from each other. Likely because of this anti–anti conformation, the attempts to synthesize first-row transition-metal complexes with H2[OO]tBu were not successful.

2022 ◽  
Juan Li ◽  
Chengdong Liu ◽  
Xiang Wang ◽  
Yayun Ding ◽  
Zhou Wu ◽  

Incorporating transition metal (TM) complexes into cluster-based chalcogenide frameworks is an effective synthetic strategy to induce structural diversity and to control the optoelectronic properties, which may further improve their photocatalytic...

Mikhail A. Kinzhalov ◽  
Elena V. Grachova ◽  
Konstantin V Luzyanin

Organometallics featuring acyclic diaminocarbene (ADC) ligands have recently emerged as powerful emitters for use in OLEDs and other electroluminescent technologies. Owing to strong σ-donor properties and broad synthetic availability, ADCs...

Sign in / Sign up

Export Citation Format

Share Document