scholarly journals Debates to personal conclusion in peripheral nerve injury and reconstruction: A 30-year experience at Chang Gung Memorial Hospital

2016 ◽  
Vol 49 (02) ◽  
pp. 144-150 ◽  
Author(s):  
David Chwei-Chin Chuang

ABSTRACTSignificant progress has been achieved in the science and management of peripheral nerve injuries over the past 40 years. Yet there are many questions and few answers. The author, with 30 years of experience in treating them at the Chang Gung Memorial Hospital, addresses debates on various issues with personal conclusions. These include: (1) Degree of peripheral nerve injury, (2) Timing of nerve repair, (3)Technique of nerve repair, (4) Level of brachial plexus injury,(5) Level of radialnerve injury,(6) Traction avulsion amputation of major limb, (7) Proximal Vs distal nerve transfers in brachial plexus injuries and (8) Post paralysis facial synkinesis.

2019 ◽  
Vol 130 (3) ◽  
pp. 675-685 ◽  
Author(s):  
Rajiv Midha ◽  
Joey Grochmal

In this review article, the authors offer their perspective on nerve surgery for nerve injury, with a focus on recent evolution of management and the current surgical management. The authors provide a brief historical perspective to lay the foundations of the modern understanding of clinical nerve injury and its evolving management, especially over the last century. The shift from evaluation of the nerve injury using macroscopic techniques of exploration and external neurolysis to microscopic interrogation, interfascicular dissection, and internal neurolysis along with the use of intraoperative electrophysiology were important advances of the past 50 years. By the late 20th century, the advent and popularization of interfascicular nerve grafting techniques heralded a major advance in nerve reconstruction and allowed good outcomes to be achieved in a large percentage of nerve injury repair cases. In the past 2 decades, there has been a paradigm shift in surgical nerve repair, wherein surgeons are not only directing the repair at the injury zone, but also are deliberately performing distal-targeted nerve transfers as a preferred alternative in an attempt to restore function. The peripheral rewiring approach allows the surgeon to convert a very proximal injury with long regeneration distances and (often) uncertain outcomes to a distal injury and repair with a greater potential of regenerative success and functional recovery. Nerve transfers, originally performed as a salvage procedure for severe brachial plexus avulsion injuries, are now routinely done for various less severe brachial plexus injuries and many other proximal nerve injuries, with reliably good to even excellent results. The outcomes from nerve transfers for select clinical nerve injury are emphasized in this review. Extension of the rewiring paradigm with nerve transfers for CNS lesions such as spinal cord injury and stroke are showing great potential and promise. Cortical reeducation is required for success, and an emerging field of rehabilitation and restorative neurosciences is evident, which couples a nerve transfer procedure to robotically controlled limbs and mind-machine interfacing. The future for peripheral nerve repair has never been more exciting.


RSC Advances ◽  
2019 ◽  
Vol 9 (49) ◽  
pp. 28627-28635 ◽  
Author(s):  
Zhiqiang Huang ◽  
Zhenzhao Guo ◽  
Manman Sun ◽  
Shaomao Fang ◽  
Hong Li

Electrical stimulation (ES) provides an effective alternative to peripheral nerve repair via conductive scaffolds.


Hand Surgery ◽  
2002 ◽  
Vol 07 (01) ◽  
pp. 83-100 ◽  
Author(s):  
Judith A. Bell Krotoski

Any restoration of hand function following tendon and nerve injury has to include the repair or replacement of the hand's ability to perform a great many tasks. It is hard at first to appreciate fully the loss that occurs with flexor tendon injury. With loss of flexor tendons operating at the fingers or thumb, they cannot be fully closed and the hand is impaired for grasp and release as it interfaces with objects. But, sensibility can also be compromised from tendon injury even without direct injury to nerve, as object recognition in the absence of vision requires finger movement. When peripheral nerve injury is combined with flexor tendon injury, sensibility is directly impaired. There is a loss in the sense of finger or thumb position, pain, temperature, and touch/pressure recognition, in addition to the tendon injury.


2019 ◽  
Author(s):  
Justin C. Burrell ◽  
Kevin D. Browne ◽  
John L. Dutton ◽  
Suradip Das ◽  
Daniel P. Brown ◽  
...  

AbstractApproximately 20 million Americans currently experience residual deficits from traumatic peripheral nerve injury. Despite recent advancements in surgical technique, peripheral nerve repair typically results in poor functional outcomes due to prolonged periods of denervation resulting from long regenerative distances coupled with relatively slow rates of axonal regeneration. Development of novel surgical solutions requires valid preclinical models that adequately replicate the key challenges of clinical peripheral nerve injury. Our team has developed a porcine model using Yucatan minipigs that provides an opportunity to investigate peripheral nerve regeneration using different nerves tailored for a specific mechanism of interest, such as (1) nerve modality: motor, sensory, and mixed-modality; (2) injury length: short versus long gap; and (3) total regenerative distance: proximal versus distal injury. Here, we describe a comprehensive porcine model of two challenging clinically relevant procedures for repair of long segmental lesions (≥ 5 cm) – the deep peroneal nerve repaired using a sural nerve autograft and the common peroneal nerve repaired using a saphenous nerve autograft – each featuring ultra-long total regenerative distances (up to 20 cm and 27 cm, respectively) to reach distal targets. This paper includes a detailed characterization of the relevant anatomy, surgical approach/technique, functional/electrophysiological outcomes, and nerve morphometry for baseline and autograft repaired nerves. These porcine models of major peripheral nerve injury are suitable as preclinical, translatable models for evaluating the efficacy, safety, and tolerability of next-generation artificial nerve grafts prior to clinical deployment.


2006 ◽  
Vol 88 (3) ◽  
pp. 328-328
Author(s):  
DH Nawabi ◽  
P Jayakumar ◽  
T Carlstedt

Sign in / Sign up

Export Citation Format

Share Document