scholarly journals Firstborn offspring sex ratio is skewed towards female offspring in anesthesia care providers: A questionnaire-based nationwide study from United States

2013 ◽  
Vol 29 (2) ◽  
pp. 221 ◽  
Author(s):  
Hong Wang ◽  
Deepak Gupta ◽  
Edward Kaminski ◽  
George Mckelvey
Author(s):  
Nuwan Weerawansha ◽  
Qiao Wang ◽  
Xiong Zhao He

Animals can adjust reproductive strategies in favour of corporation or competition in response to local population size and density, the two key factors of social environments. However, previous studies usually focus on either population size or density but ignore their interactions. Using a haplodiploid spider mite, Tetranychus ludeni Zacher, we carried out a factorial experiment in the laboratory to examine how ovipositing females adjust their fecundity and offspring sex ratio during their early reproductive life under various population size and density. We reveal that females laid significantly more eggs with increasing population size and significantly fewer eggs with increasing population density. This suggests that large populations favour cooperation between individuals and dense populations increase competition. We demonstrate a significant negative interaction of population size and density that resulted in significantly fewer eggs laid in the large and dense populations. Furthermore, we show that females significantly skewed the offspring sex ratio towards female-biased in small populations to reduce the local mate competition among their sons. However, population density incurred no significant impact on offspring sex ratio, while the significant positive interaction of population size and density significantly increased the proportion of female offspring in the large and dense populations, which will minimise food or space competition as females usually disperse after mating at crowded conditions. These results also suggest that population density affecting sex allocation in T. ludeni is intercorrelated with population size. This study provides evidence that animals can manipulate their reproductive output and adjust offspring sex ratio in response to various social environments, and the interactions of different socio-environmental factors may play significant roles.


2018 ◽  
Vol 29 (2) ◽  
pp. 97-104 ◽  
Author(s):  
Jing Li ◽  
Yu Wang ◽  
Cheng-Jie Zhu ◽  
Min Zhang ◽  
Hao-Yuan Hu

Localmate competition (LMC) models predict a female-biased offspring sex ratio when a single foundress oviposits alone in a patch and an increasing proportion of sons with increasing foundress number. We tested whether the solitary pupal parasitoid, Trichopria drosophilae (Hymenoptera: Diapriidae), adjusted offspring sex ratio with foundress number when parasitizing Drosophila melanogaster pupae. Mean number of female offspring was higher than that of males, with a male proportion of 26 ± 16% when only one foundress oviposited. However, male proportion reached 58 ± 26%, 48 ± 22%, and 51 ± 19% in three-, five and seven-foundress cohorts. That the male proportion of offspring increased with foundress number is consistent with LMC models.


2016 ◽  
Vol 12 (11) ◽  
pp. 20160627 ◽  
Author(s):  
Nicola Khan ◽  
Richard A. Peters ◽  
Emily Richardson ◽  
Kylie A. Robert

The hormone fluctuations that an animal experiences during ovulation can have lifelong effects on developing offspring. These hormones may act as an adaptive mechanism, allowing offspring to be ‘pre-programmed’ to survive in an unstable environment. Here, we used a transgenerational approach to examine the effects of elevated maternal corticosterone (CORT) on the future reproductive success of female offspring. We show that female zebra finches ( Taeniopygia guttata ) exposed to embryonic CORT produce daughters that have equal reproductive success (clutch sizes, fertility, hatching success) compared with the daughters produced from untreated mothers, but their offspring had accelerated post-hatching growth rates and were significantly heavier by nutritional independence. Although there was no significant effect on primary offspring sex ratio, females from CORT-treated mothers produced significantly female-biased clutches by nutritional independence. To the best of our knowledge, this is the first record of a transgenerational sex ratio bias in response to elevated maternal CORT in any avian species.


1993 ◽  
Vol 125 (3) ◽  
pp. 633-635 ◽  
Author(s):  
S.Y. Li ◽  
R. Harmsen

The two-spotted spider mite, Tetranychus urticae Koch, is an arrhenotokous species (Helle and Bolland 1967). Mated females produce both male and female offspring; unmated females produce only sons. Although there is no “normal” sex ratio for spider mites, a ratio of one male to approximately three females is often found in many tetranychid species (Wrensch 1985). The exact mechanism of the female-biased sex ratio is not fully understood, but previous studies have demonstrated several factors affecting the sex ratio in spider mites. In this report, we analyze the effects of maternal density, age, and the interaction between these factors on female daily fecundity and offspring sex ratio in T. urticae.


2004 ◽  
Vol 10 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Bernt-Erik Sæther ◽  
Erling J. Solberg ◽  
Morten Heim ◽  
John E. Stacy ◽  
Kjetill S. Jakobsen ◽  
...  

2011 ◽  
Vol 45 (1) ◽  
pp. 55-57 ◽  
Author(s):  
M O M Chelini ◽  
N L Souza ◽  
E Otta

2018 ◽  
Vol 285 (1891) ◽  
pp. 20181251 ◽  
Author(s):  
Andrea E. Wishart ◽  
Cory T. Williams ◽  
Andrew G. McAdam ◽  
Stan Boutin ◽  
Ben Dantzer ◽  
...  

Fisher's principle explains that population sex ratio in sexually reproducing organisms is maintained at 1 : 1 owing to negative frequency-dependent selection, such that individuals of the rare sex realize greater reproductive opportunity than individuals of the more common sex until equilibrium is reached. If biasing offspring sex ratio towards the rare sex is adaptive, individuals that do so should have more grandoffspring. In a wild population of North American red squirrels ( Tamiasciurus hudsonicus ) that experiences fluctuations in resource abundance and population density, we show that overall across 26 years, the secondary sex ratio was 1 : 1; however, stretches of years during which adult sex ratio was biased did not yield offspring sex ratios biased towards the rare sex. Females that had litters biased towards the rare sex did not have more grandoffspring. Critically, the adult sex ratio was not temporally autocorrelated across years, thus the population sex ratio experienced by parents was independent of the population sex ratio experienced by their offspring at their primiparity. Expected fitness benefits of biasing offspring sex ratio may be masked or negated by fluctuating environments across years, which limit the predictive value of the current sex ratio.


Sign in / Sign up

Export Citation Format

Share Document