Clinical performance of mineral trioxide aggregate versus calcium hydroxide as indirect pulp-capping agents in permanent teeth: A systematic review and meta-analysis

2019 ◽  
Vol 11 (5) ◽  
pp. 235
Author(s):  
Govula Kiranmayi ◽  
Nazia Hussainy ◽  
Anumala Lavanya ◽  
Sannapureddy Swapna
2016 ◽  
Vol 9 (3) ◽  
pp. 140 ◽  
Author(s):  
Rafeza Sultana ◽  
Mozammal Hossain ◽  
Md. Shamsul Alam

<p>The maintenance of pulp vitality and conduction of reparative dentin can be possible by indirect pulp capping with mineral trioxide aggregate (MTA) and calcium hydroxide as pulp capping agents. The objective of the study is to assess the clinical and radiological outcomes of MTA and calcium hydroxide as indirect pulp capping agents in deep carious lesions of permanent teeth. The present study included 50 permanent teeth having deep carious lesions with reversible pulp status were selected and then randomly divided into two groups of 25 teeth in a group. Standard indirect pulp capping procedures were followed. Patients were recalled at 3, 6 and 12 months interval to assess postoperative pain, the vitality of the pulp and formation of reparative dentin. In all observation periods, MTA showed more capable of reducing pain and maintain pulp vitality which was statistically significant than that of calcium hydroxide. At 12 months observation period, 24 teeth (96%) of MTA and 19 teeth (76%) of calcium hydroxide showed reparative dentin formation. It can be concluded that MTA is more effective than that of calcium hydroxide.</p><p> </p>


2008 ◽  
Vol 34 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Maria de Lourdes R. Accorinte ◽  
Roberto Holland ◽  
Alessandra Reis ◽  
Marcelo C. Bortoluzzi ◽  
Sueli S. Murata ◽  
...  

2011 ◽  
Vol 14 (4) ◽  
pp. 351 ◽  
Author(s):  
Masoud Parirokh ◽  
Ali Eskandarizadeh ◽  
Mahdieh Shahpasandzadeh ◽  
MohammadHossein Shahpasandzadeh ◽  
Molok Torabi

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuan Chen ◽  
Xinlei Chen ◽  
Yali Zhang ◽  
Fangjie Zhou ◽  
Jiaxin Deng ◽  
...  

Abstract Background Pulpotomy is one of the most widely used methods in preserving vital pulp in teeth, which is of great significance in achieving continue root formation in immature permanent teeth suffering from dental caries or trauma. The aim of this meta-analysis and systemic review is to synthesize the available evidences to compare different pulpotomy dressing agents for pulpotomy treatment in immature permanent teeth. Methods Electronic databases including MEDLINE (via Pubmed), EMBASE, the Cochrane library (CENTRAL) and the clinicaltrials.gov database were searched. The references of all included articles or relevant reviews were cross-checked. Only randomized controlled trials (RCTs) comparing two or more pulp dressing agent in permanent teeth with open apex would be included. Also, the studies should have at least 6 months of follow-up, report clinical and radiographic success in detail and publish in English. Results Five RCTs were included for a systematic review, and all of them had a high risk of bias. There is little difference in success rate between mineral trioxide aggregate (MTA) and calcium hydroxide (CH) at 6-month follow-up (risk ratio (RR) 1; 95% confidence interval (CI) 0.94 to 1.06) and 12-month follow-up (RR 1.04; 95% CI 0.96 to 1.13). There is no difference between MTA versus platelet-rich fibrin and MTA versus calcium-enriched mixture (CEM). There is only weak evidence of increased success rate in using MTA and triple antibiotic paste (TAP) rather than abscess remedy. Conclusions Based on the present evidence, similar success rates with MTA were found between the dressing agents CH, CEM, RPF and TAP as pulpotomy-dressing agents in the treatment of immature permanent teeth. More high-quality RCTs are needed in this field in future studies.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2670 ◽  
Author(s):  
Mariano S. Pedano ◽  
Xin Li ◽  
Kumiko Yoshihara ◽  
Kirsten Van Landuyt ◽  
Bart Van Meerbeek

Background. In the era of biology-driven endodontics, vital pulp therapies are regaining popularity as a valid clinical option to postpone root-canal treatment. In this sense, many different materials are available in the market for pulp-capping purposes. Objectives. The main aim of this systematic review and meta-analysis was to examine literature regarding cytotoxicity and bioactivity of pulp-capping agents by exposure of human dental pulp cells of primary origin to these materials. A secondary objective was to evaluate the inflammatory reaction and reparative dentin-bridge formation induced by the different pulp-capping agents on human pulp tissue. Data sources. A literature search strategy was carried out on PubMed, EMBASE and the Web of Science databases. The last search was done on 1 May 2020. No filters or language restrictions were initially applied. Two researchers independently selected the studies and extracted the data. Study selection included eligibility criteria, participants and interventions, study appraisal and synthesis methods. In vitro studies were included when human dental pulp cells of primary origin were (in) directly exposed to pulp-capping agents. Parallel or split-mouth randomized or controlled clinical trials (RCT or CCT) were selected to investigate the effects of different pulp-capping agents on the inflammation and reparative bridge-formation capacity of human pulp tissue. Data were synthesized via odds ratios (95% confidence interval) with fixed or random effects models, depending on the homogeneity of the studies. The relative risks (95% confidence interval) were presented for the sake of interpretation. Results. In total, 26 in vitro and 30 in vivo studies were included in the systematic review and meta-analysis, respectively. The qualitative analysis of in vitro data suggested that resin-free hydraulic calcium-silicate cements promote cell viability and bioactivity towards human dental pulp cells better than resin-based calcium-silicate cements, glass ionomers and calcium-hydroxide cements. The meta-analysis of the in vivo studies indicated that calcium-hydroxide powder/saline promotes reparative bridge formation better than the popular commercial resin-free calcium-silicate cement Pro-Root MTA (Dentsply-Sirona), although the difference was borderline non-significant (p = 0.06), and better than calcium-hydroxide cements (p < 0.0001). Moreover, resin-free pulp-capping agents fostered the formation of a complete reparative bridge better than resin-based materials (p < 0.001). On the other hand, no difference was found among the different materials tested regarding the inflammatory effect provoked at human pulp tissue. Conclusions. Calcium-hydroxide (CH) powder and Pro-Root MTA (Dentsply-Sirona) have shown excellent biocompatibility in vitro and in vivo when tested on human cells and teeth. Their use after many years of research and clinical experience seems safe and proven for vital pulp therapy in healthy individuals, given that an aseptic environment (rubber dam isolation) is provided. Although in vitro evidence suggests that most modern hydraulic calcium-silicate cements promote bioactivity when exposed to human dental pulp cells, care should be taken when these new materials are clinically applied in patients, as small changes in their composition might have big consequences on their clinical efficacy. Key findings (clinical significance). Pure calcium-hydroxide powder/saline and the commercial resin-free hydraulic calcium-silicate cement Pro-Root MTA (Dentsply-Sirona) are the best options to provide a complete reparative bridge upon vital pulp therapy. Systematic review registration number. PROSPERO registration number: CRD42020164374.


Sign in / Sign up

Export Citation Format

Share Document