A generic method of detecting private key disclosure in digital signature schemes

Author(s):  
Feng Bao
Author(s):  
William Buchanan

Public key encryption methods are often used to create a digital signature, and where Bob has a public key and a private key. In order to prove his identity, he will encrypt something related to the message with his private key, and which can then be checked with his public key. The main current methods of public-key encryption include RSA and ECC (Elliptic Curve Cryptography), and which involve computationally difficult operations. But these operations have not been proven to be hard in an era of quantum computers. One well-known hard problem is the solving of quadratic equations with $m$ equations with $n$ variables. This is a known NP-hard problem, even in a world of quantum computers. These can be used as post-quantum signature schemes and which involve multivariate equations. In order to understand these methods, this paper outlines a simple example of implementing the oil and vinegar method, and where we have a number of unknown oil variables and a number of known vinegar variables, and where the vinegar variables help convert the hard problem into an easy one.


2020 ◽  
Vol 4 ◽  
pp. 75-82
Author(s):  
D.Yu. Guryanov ◽  
◽  
D.N. Moldovyan ◽  
A. A. Moldovyan ◽  

For the construction of post-quantum digital signature schemes that satisfy the strengthened criterion of resistance to quantum attacks, an algebraic carrier is proposed that allows one to define a hidden commutative group with two-dimensional cyclicity. Formulas are obtained that describe the set of elements that are permutable with a given fixed element. A post-quantum signature scheme based on the considered finite non-commutative associative algebra is described.


Sign in / Sign up

Export Citation Format

Share Document