A Cyclic Involution of Period Eleven

1951 ◽  
Vol 3 ◽  
pp. 155-158
Author(s):  
W. R. Hutcherson

In two earlier papers * the writer discussed involutions of periods five and seven on certain cubic surfaces in S3. In this paper, a quartic surface containing a cyclic involution of period eleven is considered. The surface

There exists in space of four dimensions an interesting figure of 15 lines and 15 points, first considered by Stéphanos (‘Compt. Rendus,’ vol. 93, 1881), though suggested very clearly by Cremona’s discussion of cubic surfaces in three-dimensional space. In connection with the figure of 15 lines there arises a quartic surface, the intersection of two quadrics, which is of importance as giving rise by projection to the Cyclides, as Segre has shown in detail (‘Math. Ann.,’ vol. 24, 1884). The symmetry of the figure suggests, howrever, the consideration of 15 such quartic surfaces; and it is natural to inquire as to the mutual relations of these surfaces, in particular as to their intersections. In general, two surfaces in space of four dimensions meet in a finite number of points. It appears that in this case any two of these 15 surfaces have a curve in common; it is the purpose of the present note to determine the complete intersection of any two of these 15 surfaces. Similar results may be obtained for a system of cubic surfaces in three dimensions, corresponding to those here given for this system of quartic surfaces in four dimensions, since the surfaces have one point in common, which may be taken as the centre of a projection.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Alexander Perepechko

AbstractLet Y be a smooth del Pezzo surface of degree 3 polarized by a very ample divisor that is not proportional to the anticanonical one. Then the affine cone over Y is flexible in codimension one. Equivalently, such a cone has an open subset with an infinitely transitive action of the special automorphism group on it.


1981 ◽  
Vol 82 ◽  
pp. 1-26
Author(s):  
Daniel Comenetz

Let X be a nonsingular algebraic K3 surface carrying a nonsingular hyperelliptic curve of genus 3 and no rational curves. Our purpose is to study two algebraic deformations of X, viz. one specialization and one generalization. We assume the characteristic ≠ 2. The generalization of X is a nonsingular quartic surface Q in P3 : we wish to show in § 1 that there is an irreducible algebraic family of surfaces over the affine line, in which X is a member and in which Q is a general member. The specialization of X is a surface Y having a birational model which is a ramified double cover of a quadric cone in P3.


Author(s):  
W. L. Edge

SynopsisThe cubic surfaces in, save for the elliptic cone, are, whatever their singularities, projections of del Pezzo's non-singular surface F, of order 9 in. It is explained how, merely by specifying the geometrical relation of the vertex of projection to F, each cubic surface is obtainable “at a stroke”, without using spaces of intermediate dimensions.


1869 ◽  
Vol 159 ◽  
pp. 231-326 ◽  

The present Memoir is based upon, and is in a measure supplementary to that by Pro­fessor Schläfli, “On the Distribution of Surfaces of the Third Order into Species, in reference to the presence or absence of Singular Points, and the reality of their Lines,” Phil. Trans, vol. cliii. (1863) pp. 193—241. But the object of the Memoir is different. I disregard altogether the ultimate division depending on the reality of the lines, attend­ing only to the division into (twenty-two, or as I prefer to reckon it) twenty-three cases depending on the nature of the singularities. And I attend to the question very much on account of the light to be obtained in reference to the theory of Reciprocal Surfaces. The memoir referred to furnishes in fact a store of materials for this purpose, inasmuch as it gives (partially or completely developed) the equations in plane-coordinates of the several cases of cubic surfaces, or, what is the same thing, the equations in point-coor­dinates of the several surfaces (orders 12 to 3) reciprocal to these repectively. I found by examination of the several cases, that an extension was required of Dr. Salmon’s theory of Reciprocal Surfaces in order to make it applicable to the present subject ; and the preceding “Memoir on the Theory of Reciprocal Surfaces” was written in connexion with these investigations on Cubic Surfaces. The latter part of the Memoir is divided into sections headed thus:— “Section I = 12, equation (X, Y, Z, W ) 3 = 0” &c. referring to the several cases of the cubic surface; but the paragraphs are numbered continuously through the Memoir. The twenty-three Cases of Cubic Surfaces—Explanations and Table of Singularities . Article Nos. 1 to 13. 1. I designate as follows the twenty-three cases of cubic surfaces, adding to each of them its equation:


2019 ◽  
Vol 223 (4) ◽  
pp. 1456-1471
Author(s):  
M. Boij ◽  
J. Migliore ◽  
R.M. Miró-Roig ◽  
U. Nagel

Mathematika ◽  
1966 ◽  
Vol 13 (2) ◽  
pp. 111-120 ◽  
Author(s):  
J. W. S. Cassels ◽  
M. J. T. Guy

Sign in / Sign up

Export Citation Format

Share Document